
Performance and Security Trade-offs for

Data Obliviousness

Towards efficient and secure set intersection

Alex Jacey Ligthart-Smith (855689)
Supervised by Dr Olga Ohrimenko

and Professor Anthony Wirth

Presented for a 25-point Research Project - COMP90055
Master of Information Technology (Computing)

School of Computing and Information Systems
The University of Melbourne

December 2020

Abstract

Data oblivious algorithms offer a strong guarantee of security against information
leakage through external memory access-patterns. This security comes with a cost
to efficiency, with many oblivious algorithms incurring Ω(log n) access overheads, or
large constant factors that make them impractical. We propose a relaxed definition
of output-constrained obliviousness, suitable when the outputs of computation are
to be revealed to an adversary. We apply this definition in the context of set
intersection, with promising results under the condition of O(

√
n) private memory

size. We also present novel set intersection algorithms that have the potential
to provide further efficiency improvements with some small probability of privacy
failure.

1

Declaration

I certify that

• this thesis does not incorporate without acknowledgement any material previously
submitted for a degree or diploma in any university; and that to the best of my
knowledge and belief it does not contain any material previously published or
written by another person where due reference is not made in the text.

• where necessary I have received clearance for this research from the University’s
Ethics Committee and have submitted all required data to the School.

• this thesis is≈7900 words in length (excluding text in images, tables, bibliographies
and appendices).

2

Alex Ligthart-Smith
03/12/2020

Acknowledgements

I acknowledge that my work has been undertaken on the stolen land of the Wurund-
jeri Woi Wurrung people of the Kulin nation, and that sovereignty has never been
ceded.

I wish to thank my supervisors, Olya and Tony, for their patience and generosity with
me throughout this difficult year. It has been a pleasure to work with them and to draw
on their knowledge and wisdom.

Thank you to darcy and Joshua for your support and encouragement, and to Caspian,
Hester, and Ronly Honly Bing for reminding me to take time to nap in sunbeams and
to seek the comfort and warmth of loved ones.

I owe a debt of gratitude and solidarity to the retail, food service, warehouse, and
freight/delivery workers whose work has allowed me to complete this thesis in relative
comfort and safety at home during a pandemic.

3

Contents

1 Introduction 6

2 Preliminaries 7
2.1 External Memory Model . 7
2.2 Data Oblivious Algorithms . 8

3 Background and Related Work 9
3.1 Oblivious Sorting . 9
3.2 Oblivious Shuffle . 9
3.3 Oblivious RAM (ORAM) . 10
3.4 Differentially Private (DP) Obliviousness 10
3.5 Private Record Linkage . 11

4 Output-Constrained Obliviousness 12
4.1 Definitions . 12
4.2 Example: OC-Oblivious Sorting . 12
4.3 Comparison of Obliviousness Definitions 13

5 Set Intersection Algorithms 15
5.1 Non-oblivious Set Intersection . 15
5.2 Fully Oblivious Set Intersection . 17
5.3 Output-Constrained Oblivious Set Intersection 18

5.3.1 Binary-search based algorithm 18
5.3.2 Hash based algorithm . 20

5.4 δ-statistically Oblivious Set Intersection 21
5.4.1 Binary-search based algorithm 21
5.4.2 Hash based algorithm . 23

6 Conclusion 25

4

List of Figures

1 Difference in domains between full obliviousness and OC-obliviousness. . 13
2 A binary-search-tree model of a modified binary-search from Algorithm 7. 23

List of Tables

1 The number of neighbours of a given input set I for various algorithmic
classes and neighbour definitions. 14

2 Comparison of asymptotic set intersection algorithm performance. . . . 15
3 Comparison of approximate I/O operations for merge-based oblivious set

intersection, Algorithm 4, and binary-search based OC-oblivious set in-
tersection, Algorithm 5. 19

List of Algorithms

1 Basic merge-based set intersection . 16
2 Set intersection using sorting and binary-search 16
3 Set intersection using a hash table . 17
4 Merge-based oblivious set intersection . 17
5 OC-Oblivious Set intersection (binary-search) 18
6 OC-Oblivious Set intersection (hashing) 20
7 δ-Oblivious Set intersection (binary-search) 22
8 δ-Oblivious Set intersection (hashing) . 23

5

1 Introduction

Data is increasingly moving away from on-site servers onto external servers in the cloud.
While this offers reduced financial costs and increased flexibility, it comes with increased
costs in terms of data security and network latency. Encryption offers strong security
against unauthorised parties viewing the contents of data, however there is some in-
formation that can still be discerned from the way the data is accessed. One point
of information leakage is through the sequence of read and write operations requested
on the data. For example, Islam et al. [1] present an attack on searchable encryption
schemes that is able to identify 80% of search queries on an encrypted email database,
from access-patterns alone.

Data obliviousness is a security guarantee developed to protect against such attacks.
Data oblivious algorithms ensure that the sequence of accesses made on an input data
set are computationally indistinguishable for all inputs of the same size. Oblivious
algorithms are available for a variety of purposes, including sorting [2, 3, 4, 5] and
shuffling [5, 6], as well as various oblivious RAM constructions (ORAM) [7, 8, 9, 10]
that provide generic access-pattern privacy.

Data oblivious algorithms provide strong security guarantees, however these come
with reduced efficiency in terms of the number of I/O operations performed on the ex-
ternal data, which is exacerbated by network latency. Classic sorting networks, that
provide obliviousness through deterministic compare and swap sequences, have imprac-
tical overheads; Batcher’s famous sorting network [2] has a cost of O(n2 log n), while
the O(n log n) AKS sorting network [3] has a constant factor that makes it unrealistic
in practice. In fact, oblivious sorting, ORAMs, and some other oblivious algorithms
including merging, have a lower bound access overhead of Ω(log n) [7, 11, 12, 13]. Re-
laxed security guarantees, such as differentially private obliviousness [13, 14], provide a
compromise between access overhead and access-pattern privacy. With Chan et al. [13]
proving O(n log logn) runtimes for sorting and merging under their definition.

We consider the case of an output-constrained obliviousness, whereby our adversary
has access to the output of a computation. For example, when outputs are to be revealed
in a publicly available report or article. When the output is revealed, there is some
amount of information already available to the adversary that we no longer need to
conceal. We apply this relaxed security definition particularly in the context of set
intersection, whereby the size of the intersection and the values of the elements within it
are revealed to the adversary. As such, any information within the access-patterns that
reveals only intersection size and values need not be concealed. The goals of this project
are to provide a precise definition of output-constrained (OC) obliviousness, and to
develop efficient set intersection algorithms that fulfill this new security definition.

We draw on existing data oblivious algorithms, ORAMs, and relaxed notions of obliv-
iousness to provide a definition of OC obliviousness that is consistent with the literature.
We then use the definition, as well as common set intersection algorithms, and techniques
from the literature, to develop novel OC-oblivious set intersection algorithms. These al-
gorithms are able to compete with the efficiency of their non-oblivious counterparts
when equipped with an O(

√
n) private memory. We also briefly explore the efficiency

benefits of a common relaxation, δ-statistical obliviousness, that allows a small proba-
bility of privacy failure, and begin developing efficient set intersection algorithms under
this definition.

6

2 Preliminaries

Data oblivious algorithms are defined under an external memory model: a private CPU
with a small private memory (the “client”) and a large external memory (the “server”).
It is assumed that the server is an “honest-but-curious” adversary, and that all data is
securely encrypted and decrypted by the client, so the only information visible to the
server is the access-pattern.

2.1 External Memory Model

Data oblivious algorithms are carried out in an external memory environment, where a
client reads and writes data blocks from/to a server :

• Data Blocks are fixed size units of data that can be stored, read, and written.
Assume that the size of each block is sufficient to contain its location in a memory
containing up to N blocks, i.e. the block size must be Ω(logN). Going forward,
size complexity is measured in terms of the number of data blocks.

• The Client can perform private computation and has a small private memory
that persists between operations. The client stores encryption keys in private
memory, and encrypts and decrypts data blocks privately using a semantically
secure encryption scheme, so that same data block re-encrypted looks different
from the point of view of the server [15]. Unless otherwise specified, assume that
the client’s private memory is of size O(1).

• The Server is a large external memory. It does not perform computation, decryp-
tion, or encryption. The server can also be considered as the honest-but-curious
adversary under this model. This server carries out all data access requests faith-
fully, but has an imperative to learn as much as possible about the client’s data
[16]. Since encryption prevents the server from learning anything about the con-
tents of any data block, data blocks can be treated as opaque balls, and the data
access-patterns as the only information available to the server. The server is of
size Ω(N).

In this model, running algorithmM on input I produces some (deterministic) output
(or result) o ∈ O and a (possibly randomised) access-pattern s ∈ S. While the access-
pattern is a type of output, it must be distinguished from the intended output of the
algorithm, which is more easily concealed from the server.

Definition 2.1 (Access-Pattern). Let opj be a read/write operation between private
memory and external memory. When opi := read(ai), the data block at location ai of
the external memory is read to private memory. When opi := write(ai, datai) data block
datai is copied from private memory to external memory location ai. An access-pattern
A := (op0, op1, ..., opn−1) is a sequence of n read/write operations.

The primary efficiency concern for external memory algorithms is the I/O complexity
of algorithms: that is, the number of requests sent to the server, rather than the number
of computation steps performed in private memory [6]. This is because communication
between the client and server is affected by network latency.

7

2.2 Data Oblivious Algorithms

Data oblivious algorithms are designed to prevent an adversary from learning informa-
tion from access-patterns, by ensuring that the sequence of memory accesses is indepen-
dent of the input data [17, 13].

Definition 2.2 (Data Oblivious Algorithm [17]). An algorithm M, that produces some
access-pattern AM(I) ∈ S is data oblivious if

Pr[AM(I1) ∈ S] = Pr[AM(I2) ∈ S] (1)

for all inputs |I1| = |I2|, where S ∈ S is a subset of all possible memory access-patterns
produced by the algorithm.

That is, for any two inputs of the same size, the probability distribution of access-
patterns is the same, hence an adversary cannot distinguish the inputs based on access-
patterns alone.

A slightly relaxed definition of obliviousness allows some small probability of privacy
failure. A statistical difference of up to δ between the distributions of access-patterns is
allowed for any two inputs of the same size.

Definition 2.3 (δ-Statistically Oblivious Algorithm [13, 18]). An algorithm M, that
produces some access-pattern AM(I) ∈ S is δ-Statistically data oblivious if

Pr[AM(I1) ∈ S] ≤ Pr[AM(I2) ∈ S] + δ (2)

for all inputs |I1| = |I2|, where S ∈ S is a subset of all possible memory access-patterns
produced by the algorithm.

Throughout this document, the phrase full obliviousness is used to describe algorithms
meeting the requirements of Definition 2.2. δ-obliviousness, as in Definition 2.3, is not
addressed until Section 5.4.

8

3 Background and Related Work

In order to achieve our goal of producing efficient and oblivious set intersection algo-
rithms, there are several techniques that we either use directly or draw inspiration from.
In this section we describe some algorithms that we employ as part of our set intersection
algorithms, oblivious sorting and oblivious shuffle; provide some context for the inspi-
ration of our techniques from Oblivious RAMs and Private Record Linkage; and offer
for comparison another relaxation on obliviousness in Differentially Private Oblivious
Algorithms.

3.1 Oblivious Sorting

Some of the first oblivious algorithms were sorting networks. Batcher introduced an
odd-even merge sorting network in 1968 [2], this was designed as a hardware switch-
ing network to parallelise sorting however also functions as a deterministic oblivious
sorting algorithm. The sorting network compares elements in a predefined sequence,
with a total of Θ(n log2 n) comparisons required to sort n items. Since the sequence of
comparisons is predefined, every two inputs of the same size follow the exact same se-
quence of comparisons, making this algorithm deterministically oblivious. Non-oblivious
comparison-based sorting algorithms can be performed in Θ(n log n) comparisons, so this
network has a logarithmic access overhead.

The AKS sorting network [3] overcomes this overhead, as an Θ(n log n) comparison
network, however the original algorithm has a constant factor overhead of 299, with the
most efficient modification obtaining a constant factor of 1.36 × 107 [19, 20]. These
constant factors make this algorithm unfeasible to implement in practice. The number
of comparisons in a deterministic sorting network is further improved by Goodrich’s
Zig-Zag sort [20], which requires 1.96× 104×n log n comparisons. Unlike Batcher’s and
the AKS sorting network, Zig-Zag sort is not parallelisable.

Allowing for a larger private memory, and some probability of failure, Bucket Oblivious
Sort [5] provides a more realistic O(n log n) oblivious sort. This algorithm runs with a
constant factor of just 6, with a failure probability of e−Z/6, where Z is the number of
data blocks that can be stored in private memory. So with Z = Ω(logN) the failure
probability is negligible in N .

An alternative oblivious sorting method involves first performing an oblivious random
permutation (shuffle) of the data, and then sorting using a non-oblivious comparison-
based method [10]. This is promising, but most known oblivious shuffle algorithms
rely on an intermediate oblivious sort, so in those cases this cannot offer any improve-
ment.

3.2 Oblivious Shuffle

Given an input I containing N data blocks, a random permutation re-orders the blocks,
selecting from the N ! possible orderings uniformly at random; a pseudo-random per-
mutation is one that is indistinguishable from a random permutation by any efficient1

adversary [21]. An oblivious shuffle is an algorithm that performs a random permutation
of its input without revealing any correlation between the original and final locations of
the data blocks [6].

1running in polynomial time

9

An oblivious shuffle of the input data can be a useful step in a number of other
oblivious algorithms, such as the sorting example above. Assuming that each data
block is identified by some unique, ordinal key x from the space X, then a random
permutation of data blocks can be performed by choosing a a bijection F : X → X
uniformly at random, tagging each element of I with a new random key F (x), and
sorting the data based on these tags. As such, traditional oblivious shuffle algorithms
are performed by obliviously sorting the data based on the values of random tags [6]. The
performance of these algorithms depends on that of the underlying oblivious sort.

The Melbourne Shuffle [6] overcomes this limitation, providing an oblivious shuffle
that does not depend on an oblivious sorting algorithm. This algorithm can shuffle N
data blocks with just O(

√
N) I/O operations and O(N) client computation steps, but

relies on a private memory of size O(
√
N) and a message size of O(

√
N), and has a

negligible probability of failure.

3.3 Oblivious RAM (ORAM)

Oblivious RAM, introduced by Goldreich and Ostrovsky [7, 8], is a generalised defini-
tion of data obliviousness where the input is a requested access-pattern, and the actual
sequence of accesses performed must fulfil the requirements of obliviousness given in Sec-
tion 2.2. That is, for any sequence of operations requested, an oblivious RAM accurately
carries out the request while performing an access sequence that is computationally in-
distinguishable from that for any requested sequence of the same length. Unfortunately,
there is a Ω(logN) lower bound on blowup in the number of data access operations for
any oblivious RAM with N data blocks [7, 11].

Path ORAM [9] is a near-optimal ORAM protocol that employs a binary-tree struc-
ture combined with a private memory of size O(logN) · ω(1), and performs well in
practice. Under this protocol, access overheads are limited by relying on a larger band-
width to fetch a full path of the binary-tree at each access. The binary-tree is made up
of buckets, with each data block mapped to a random leaf node. Write operations are
stashed, and when a path is fetched for a read operation any stashed write blocks are
inserted into the fetched path in the deepest bucket that is on the path to their leaf
node, if there is sufficient space. The idea of randomly mapping data blocks onto leaf
nodes of a binary-tree in order to achieve obliviousness is revisited in Section 5.4.

The Ω(log(N)) lower bound for ORAM can be extended more generally to a variety
of oblivious algorithms [13]. These overheads can make full obliviousness impractical
for large-scale applications.

3.4 Differentially Private (DP) Obliviousness

In order to reduce overhead while still providing access-pattern privacy, Chan et al. [13]
and Wagh et al. [14] have developed definitions of differentially private (DP) oblivious-
ness. DP-obliviousness draws on the concept of differential privacy (DP), introduced by
Dwork et al. [22], generalising the definitions of DP for computed statistics to consider
data access-patterns themselves as a statistic to be kept differentially private.

10

Definition 3.1 (Differentially Private Oblivious Algorithm). For neighbouring inputs
I and I ′ (differing by only one entry), Chan et al. [13] define (ε, δ)-Differential oblivi-
ousness as

Pr[AM(I) ∈ S] ≤ eε · Pr[AM(I ′) ∈ S] + δ (3)

where eε is an allowed difference factor in the distributions of access-patterns, and δ
is some small probability of failure.

This relaxes the requirements of full obliviousness both in the allowed statistical dif-
ference between distributions, and the limitation to neighbouring databases. These
relaxations are shown to reduce the overhead for sorting and merging algorithms to
O(log logN) [13].

3.5 Private Record Linkage

The goal of Private record linkage (PRL) is to identify matching pairs of records between
private databases held by two (or more) parties, in such a way that the privacy of the
source databases is maintained. This is similar to oblivious set intersection in that it
is concerned with privately matching records, however it differs in the nature of the
adversary. While we are interested in concealing the access-patterns made on a single
server holding two input sets, from the server itself, PRL can be considered as two
separate servers concealing their contents from one another, revealing only the size of
their data sets and the contents of the intersection [23].

PRL is usually achieved using secure two-party computation (S2PC), however these
solutions have either low recall or do not meet efficiency requirements. He et al. [23] pro-
pose a novel security definition, Output Constrained Differential Privacy, which reveals
the output of the computation performed on two private databases, while releasing only
differentially private statistics about any data not revealed in the output. In the context
of PRL, this composes differential privacy and S2PC to provide strong guarantees for
both efficiency and recall, while maintaining DP for all elements of each database not
in the intersection.

Our definition of output constrained obliviousness is inspired, in part, by this work.

11

4 Output-Constrained Obliviousness

As in the case of PRL, where the two parties must reveal the matching records to one
another, there are circumstances where the server has access to the output of some com-
putation. For example, when the output is to be released publicly in a report or article.
Since not all information about the data can be extrapolated from the released outputs,
there is still value in maintaining access-pattern privacy. In this situation, though, full
obliviousness also conceals information that can be deduced from the outputs. We pro-
pose a new definition, output-constrained (OC) obliviousness, with the goal of reducing
the computational overhead of data obliviousness by taking into account the adversary’s
knowledge of the output.

4.1 Definitions

We first give a definition of output neighbors (o-neighbors), any two inputs of the same
size whose output is the same. This is definition is inspired by a definition of r-neighbors
given by Chan et al. [13] for their analysis of DP-oblivious algorithms.

Definition 4.1 (o-Neighbors). Let M : I → O be an algorithm with input database
I ∈ I, that produces a deterministic output o ∈ O. Input databases I and I ′ are
o-Neighbors, denoted (I, I ′) ∈ N o(M) if M(I) = M(I ′). That is, if the algorithm
produces the same output when the input is either of the databases.

While an algorithm’s output must be deterministic to fit this definition, its access-
patterns can be randomised. An algorithm is OC-oblivious if the distributions of access-
patterns are equal for o-neighboring inputs.

Definition 4.2 (OC-Obliviousness). Let M : I → S be a (possibly randomised) algo-
rithm with input database I ∈ I, that produces an access-pattern s ∈ S and a deter-
ministic output o ∈ O. M is output-constrained data oblivious (OC-oblivious) if for
every two o-neighboring inputs (I, I ′) ∈ N (A), and every subset of possible memory
access-patterns S ⊆ S, we have:

Pr[AM(I) ∈ S] = Pr[AM(I ′) ∈ S]. (4)

That is, access-patterns are independent of input within every set N o(M) of inputs that
produce the same output.

4.2 Example: OC-Oblivious Sorting

As an exercise, let us consider the case of sorting. OC-Oblivious sorting can be used if
the sorted values are to be released publicly, but their original entry order into the data
set must be concealed. Let A : I → (S,O) be a sorting algorithm with input database
I ∈ I, that produces some access-pattern s ∈ S and output o ∈ O. A is OC-oblivious
if for every permutation, I ′, of I Equation 4 is satisfied. That is, the access-patterns
appear independent of the order in which their entries appear in the database.

As mentioned in Section 3.1, an alternative to sorting networks for oblivious sorting
is to first obliviously shuffle the data and then sort using a non-oblivious comparison-
based method. Known oblivious permutations that do not rely on sorting networks
[6, 5] require some additional client storage, as well as incurring some small probability
of error. In the case where data blocks are to be sorted based on some key that can

12

be represented with w bits, and allowing O(
√
N) client memory and a negligible error,

we can perform OC-Oblivious sorting by first obliviously permuting the data using the
Melbourne Shuffle [6] then sort using a non-comparison-based sort, such as radix sort.
This gives us an O(w ·N) sorting algorithm, an improvement on the known Ω(N logN)
lower bound for fully oblivious sorting when w ∈ o(logN).

4.3 Comparison of Obliviousness Definitions

One way to compare definitions of full and relaxed obliviousness is to compare the sizes
of the sets that must share access-pattern distributions. Under full obliviousness, all
inputs of the same size must map onto the same distribution of access-patterns, whereas
under OC-obliviousness we only require that of inputs that are both the same size and
have the same deterministic output. Figure 1 shows the difference between the set
of inputs that must produce the same distributions of access-patterns under the two
definitions. DP-obliviousness can be considered a further relaxation on oblivious not
only because of the allowed ε and δ errors, but also because access-pattern distributions
must only be similar for inputs that differ by at most one entry.

I A(I) I ′ A(I ′)

(a) (b)

Figure 1: Difference in domains between full obliviousness and OC-obliviousness. In
(a) we see the domain of all possible inputs to an algorithm, I mapping to all possible
access-patterns, A(I). In (b) we see the sub-domain I ′ of some specific o-neighboring
set N o, mapping to some subset of access-patterns A(I ′).

Table 1 shows the size of neighbour sets under different definitions of obliviousness,
where the a ‘neighbour’ under full obliviousness is every input of the same size (in terms
of the number of data blocks). Here we have that n is the full size of the input and k
is the size of the key-space K that comparisons are being made on; m1 and m2 are the
sizes of two input arrays used in set intersection and merging and m is the size of the
set intersection; h is the number of equal-sized ranges in a frequency histogram and si is
the size of bar i of the output histogram. Assume k ≥ n. All algorithms are disallowing
duplicates for simplicity of calculating permutations.

We can see that in general the size of the neighbor sets for DP-obliviousness is smallest,
and for full obliviousness is largest, with the differences between OC-obliviousness and
full obliviousness depending strongly on the nature of the algorithm. This indicates
that we can expect OC-obliviousness to provide stronger performance improvements for
some classes of algorithms over others.

13

Table 1: The number of neighbours of a given input set I for various algorithmic classes
and neighbour definitions. Here m1 and m2 are input set sizes, with m1 ≤ m2, m is the
size of the intersection, n = m1 +m2, and k ≥ n is the size of the key-space data block
identifiers are drawn from.

DP-Oblivious OC-Oblivious Fully Oblivious

Sorting n(k − n+ 1) n! n!
(
k
n

)
Set Intersection

m1(k −m1 + 1)·
m2(k −m2 + 1)

m1!
(

k
m1−m

)
·

m2!
(

k
m2−m

) m1!
(
k
m1

)
·m2!

(
k
m2

)
Merging

(pre-sorted)
m1m2(k − n+ 1)2

(
n
m1

) (
k
n

)(
n
m1

)
Key search
(pre-sorted)

n(k − n+ 1)

(
k−1
n−1
)

present,(
k−1
n

)
absent

(
k
n

)
Frequency
histogram
(unsorted)

n(k − n+ 1) n!
∏h
i=1

(k
h
si

)
n!
(
k
n

)

14

5 Set Intersection Algorithms

We now move to the description and evaluation of set intersection algorithms, first de-
scribing some non-oblivious and fully oblivious set intersection algorithms as a baseline,
and moving on to novel algorithms with relaxed security guarantees. Here we assume
that a set is stored in memory as an unsorted list, with no duplicate elements, and that
a set intersection algorithm, with inputs S1 and S2 returns the set S1 ∩ S2 = S as an
unsorted list. Each element of each set is a single data block, and elements can be sorted
and matched based on some ordinal key. We have |S1| = m1, |S2| = m2, and |S| = m;
without loss of generality, we assume that m1 ≤ m2. We must modify our definitions
of oblivious (Definitions 2.2 and 2.3) slightly to accommodate the two input sets. Not
only is our obliviousness only guaranteed for inputs (I, I ′) of the same size |I| = |I ′|,
we must also have that corresponding sets within the inputs are the same size, that is,
m1 = m′1 and m2 = m′2.

Table 2 compares the asymptotic time complexity of the set intersection algorithms
presented throughout this section. Note that the δ-oblivious algorithms perform asymp-
totically equivalent or close to their non-oblivious counterparts, while OC-oblivious al-
gorithm performance depends on the size of private memory, due to the complexity of
the underlying shuffle algorithms.

Table 2: Comparison of asymptotic set intersection algorithm performance. Here m1

and m2 are input set sizes, with m1 ≤ m2, and n = m1 +m2.

Algorithm
I/Os

O(1) private memory

I/Os
O(
√
n) private memory

1: Non-oblivious merging O(m2 logm2)

2: Non-oblivious binary-search O(m2 logm1)

3: Non-oblivious hashing O(m2) exp.

4: Fully oblivious merging O(m2 logm2)

5: OC-oblivious binary-search O(m2 logm2) O(m2 logm1)

6: OC-oblivious hashing O(m2 logm2) exp. O(m2) exp.

7: δ-oblivious binary-search O(m2 logm1)

8: δ-oblivious hashing O(m1 logm1 +m2) exp. O(m2) exp.

5.1 Non-oblivious Set Intersection

A standard external memory set intersection algorithm, Algorithm 1 sorts each list, and
then performs a merge-like iteration through them to find matching elements. This algo-
rithm performs in O(m1 logm1)+O(m2 logm2)+O(m1+m2) = O(m2 logm2) I/Os, pro-
vided that sorting comprises an O(n log n) comparison-based sorting algorithm.

In addition to the information revealed during the non-oblivious sorting of the sets,
this algorithm reveals the size of the intersection. Depending on the amount of location
information revealed during sorting, concrete or probabilistic information about which
items from each set are in the intersection are also revealed. For example, the speed at
which the algorithm iterates through each of the lists trivially reveals the relative order
of items in the two sets.

If the two sets are of significantly different sizes the efficiency of set intersection can

15

Algorithm 1: Basic merge-based set intersection

Input: Sets S1 and S2 stored in external memory
Output: Set S = S1 ∩ S2, written to external memory
initialise S;
sort(S1); sort(S2);
i, j ← 0;
while i < m1 and j < m2 do

if S1[i] = S2[j] then
append(S, S1[i]); . add the element to the output set

i← i+ 1;
j ← j + 1;

else if S1[i] < S2[j] then
i← i+ 1;

else
j ← j + 1;

return S;

be improved by only sorting the smaller of the two sets. Algorithm 2 finds the set
intersection S1 ∩ S2 by first sorting the smaller set S1 and then searching it for each
element of the larger set S2 via binary-search. Using a comparison-based sort, this
performs in O(m1 logm1) +O(m2 logm1) = O(m2 logm1) I/Os, an improvement on the
performance of Algorithm 1 when m1 < nc for all c > 0.

Algorithm 2: Set intersection using sorting and binary-search2

Input: Sets S1 and S2 stored in external memory, with |S1| ≤ |S2|
Output: Set S = S1 ∩ S2, written to external memory
initialise S; . New set to contain intersection

sort(S1);
for s ∈ S2 do

if s ∈ S1 then . Binary-search

append(S, s); . Add record to S

return S;

This algorithm again reveals information through sorting, and during the binary-
search phase reveals which items from S2 are in the intersection, as its original order is
maintained in the outer loop.

Avoiding sorting altogether, expected performance for set intersection can be im-
proved by instead searching in a hash table. Algorithm 3 finds the set intersection by
first hashing S2 to a table H and then searching H for the elements of the smaller set
S1. Since S2 is guaranteed to contain no duplicates, each insertion can be performed
in O(1) (guaranteed or expected, depending on implementation) I/Os, giving a total
expected O(m2) I/Os to build the hash table. Assuming simple uniform hashing in a
table larger than |S2|, search requires O(1) expected I/Os. Thus the algorithm performs
in O(m2) + O(m1) = O(m2) expected I/Os, and requires Ω(m2) additional external
memory.

2“Maria’s Algorithm”

16

Algorithm 3: Set intersection using a hash table

Input: Sets S1 and S2 stored in external memory, with |S1| ≤ |S2|
Output: Set S = S1 ∩ S2, written to external memory.
initialise S; . New set to contain intersection

H ← hash(S2);
for s ∈ S1 do

if s ∈ H(s) then
append(S, s); . Add record to S

return S;

Through use of an appropriate hash function, this algorithm obscures the relative
order of items in the sets. The adversary can, however, learn exactly which elements
from both sets are in the intersection by closely observing the pattern of hash table
insertions and searches, and writes to S.

These algorithms provide a benchmark for the efficiency of set intersection on unsorted
input data.

5.2 Fully Oblivious Set Intersection

Algorithm 4: Merge-based oblivious set intersection

Input: Sets S1 and S2 stored in external memory
Output: Set S written to external memory. |S| = n+ 1. S[0] is a size variable

m, S[1..m] contains S1 ∩S2, and S[m+ 1..n] contains dummy variables.
m← 0;
S ← append([0], S1, S2);
obliviously sort S;
for i ∈ [1, |S| − 1) do

a← read(S[i]); . read to private memory and decrypt

b← read(S[i+ 1]);
if a = b then

write(S[i], a); . encrypt and write to external memory

m← m+ 1;

else
write(S[i],dummy);

write(S[0],m) ; . to an appropriate location in external memory

obliviously sort S[1..n] ; . s.t. dummy variables appear at the end of S
return S;

A fully oblivious set intersection can be built from a merge-based approach, like that
in Algorithm 1. Arasu and Kaushik [24] offer this approach, specifically in the context of
relational database joins. In Algorithm 4 we offer a simplified version of their algorithm,
with generalised syntax. It involves first appending the two sets together into a list S,
of size n, before obliviously sorting S and scanning it for duplicates. When a pair of
adjacent elements are not duplicates, the first element of the pair is replaced with a
dummy element to prevent the adversary from learning how many elements are in the
intersection, and their relative positions in the union of the sets. Finally, S must be

17

obliviously sorted again such that the dummy elements appear at the end of the list.
The I/O complexity of this algorithm is dominated by the oblivious sort, O(n log n) [16].
In fact, there is an Ω(n log n) lower bound on fully oblivious merging algorithms [13, 12].
Overall, Algorithm 4 requires constant private memory (sufficient to hold two records),
and O(n) additional external memory.

This algorithm is trivially oblivious as, when a deterministic sorting network is used
for the sorting phase, the access-patterns are deterministic and depend only on the sizes
of the two sets.

5.3 Output-Constrained Oblivious Set Intersection

5.3.1 Binary-search based algorithm

While Algorithm 4 provides full data obliviousness, it does so at a cost in I/O operations
relative to the non-oblivious implementations. The security guaranteed is stronger than
necessary in the case where the intersection itself is to be revealed. In particular, reveal-
ing the size of the intersection allows us to take advantage of any significant difference
in the sizes of S1 and S2.

In Algorithm 5 we offer a binary-search-based approach to an OC-Oblivious set in-
tersection. Inputs S1 and S2 are first each obliviously shuffled and Algorithm 2 is run
on random tags applied during the shuffle (see Section 3.2). The performance of this
algorithm depends on that of the underlying shuffle. If an oblivious-sort-based shuffle
is used, then we have O(m1 logm1) + O(m2 logm2) + O(m2 logm1) = O(m2 logm2)
I/Os and O(m) additional external memory. If we use the Melbourne Shuffle this is
reduced to O(m1) +O(m2) +O(m2 logm1) = O(m2 logm1) I/Os, matching the asymp-
totic performance of its non-oblivious counterpart, but we require up to O(

√
m2) private

memory.

Algorithm 5: OC-Oblivious Set intersection (binary-search)

Input: Sets S1 and S2 stored in external memory, with |S1| ≤ |S2|
Output: Set S = S1 ∩ S2, written to external memory.
obliviously shuffle S1; . applying random tags

obliviously shuffle S2;
Call Algorithm 2, binary-searching in S1 for each element in S2, matching
random tags;

To prove that this algorithm is OC-oblivious we must first define an ideal oblivious
shuffle function o-shuffle.

Definition 5.1 (O-Shuffle). O-shuffle is a fully oblivious algorithm, meeting the re-
quirements of Definition 2.2. It performs a random permutation on an input I, of size
|I| = n, by calling on a random oracle to compute random tags for each element. O-
shuffle writes to memory the set Ip, containing the elements of I with their tags attached,
sorted according to the tag values. The random oracle ensures that the elements of Ip

are ordered according to each possible permutation of I with equal probability 1
n! .

Theorem 5.1. Algorithm 5 is OC-Oblivious, according to Definition 4.2, when o-
neighboring inputs (I, I ′) have m1 = m′1 and m2 = m′2, and where we have access
to an ideal oblivious shuffle algorithm o-shuffle.

18

Proof. Let us first assume that we have access to some ideal oblivious shuffle algorithm,
o-shuffle. As such, the first and second steps of Algorithm 5 are, by definition, oblivious.

Now, we have some input I = (S1, S2) with S1 ∩ S2 = S, where |S1| = m1, |S2| = m2,
and |S| = m. After performing o-shuffle on each set, giving us Sp1 and Sp2 , the locations
of the elements of S within the list representations of S1 and S2 must now be uniformly
randomly distributed, according to Definition 5.1. Specifically, there are

(
m1

m

)
ways that

the set S can be distributed throughout Sp1 , each occurring with equal probability, and
similarly

(
m2

m

)
for Sp2 . The permutations of the elements of S within those distributions

must also be uniformly distributed, so we have
(
m1

m

)
·m! equally likely ways of mapping

the elements of S into the list Sp1 , and
(
m2

m

)
·m! for Sp2 .

Moving on to the binary-search step, assuming we bypass the sorting step of Algorithm
2, since we already have our sets sorted according to their random tags, we must consider
the access-patterns produced by searching for each element of Sp2 within Sp1 . Given
that Sp1 and Sp2 are sorted according to random tags, the probability distribution of
access-patterns produced by performing these searches depends only on the values m,
m1, and m2. So for any input I, and every subset, B, of all possible binary-search
access-patterns on inputs with the same dimensions (m1,m2,m), we have Pr[A(I) ∈
B] = f(m1,m2,m,B). Therefore, if we have two o-neighboring inputs I and I ′ with
m1 = m′1, m2 = m′2 and, by the o-neighbor definition, m = m′, then for every such
subset, B, we have

Pr[A(I) ∈ B] = f(m1,m2,m,B) = f(m′1,m
′
2,m

′, B) = Pr[A(I ′) ∈ B].

Since the shuffle phase is fully oblivious by definition, Algorithm 5 is therefore OC-
oblivious by Definition 4.2. �

Table 3: Comparison of approximate I/O operations for merge-based oblivious set inter-
section, Algorithm 4, and binary-search based OC-oblivious set intersection, Algorithm
5. Here m1 and m2 are input set sizes, with m1 ≤ m2, m is the size of the intersection,
and n = m1 +m2.

Private memory I/Os

Fully Oblivious Alg. 4
(AKS sorting network [3])

O(1) 1.08× 108 × n log n+ 4n

Fully Oblivious Alg. 4
(Bucket Oblivious Sort [5])

O(
√
n) 12n log n+ 2

√
n

OC-Oblivious Alg. 5
(AKS Sorting Network [3])

O(1)
2n+ 5.4× 107 ×m1 logm1

+5.4× 107 ×m2 logm2

+m2 logm1 +m

OC-Oblivious Alg. 5
(Melbourne Shuffle [6])

O(
√
n)

2m2 logm1 + 14(
√
m1 +

√
m2)

+ n
m1

+ 2m1√
n

It is important to note here that only in the case where m1 ∈ o(mc
2) for all c ∈ R+ is

O(m2 logm1) ∈ o(m2 logm2), and in this case, we could perform even a fully oblivious
set intersection with O(

√
m2) I/Os given O(

√
m2) private memory. Hence, our OC-

Oblivious algorithm offers no asymptotic performance improvement over a fully oblivious
set intersection. With this in mind, Table 3 compares the actual I/Os performed by
these algorithms. Comparison of the fully oblivious set intersection using oblivious

19

bucket sort [5] with private memory O(
√
n), and OC-Oblivious intersection using the

Melbourne Shuffle [6], gives a performance increase of approximately a factor of 12 when
m1 ∈ [

√
n, n2].

5.3.2 Hash based algorithm

In Algorithm 5 we offer a hash based approach to an OC-Oblivious set intersection.
Sets S1 and S2 are first obliviously permuted, and then Algorithm 3 is performed based
on random tags applied during the permutation step. The performance of this algo-
rithm depends on that of the underlying shuffle. If an oblivious sorting based shuffle
is used, then we have O(m1 logm1) + O(m2 logm2) + O(m1) + O(m2) = O(m2 logm2)
expected I/Os, which again does not provide and asymptotic improvement. However,
via Melbourne Shuffle we have O(m2) expected performance. This approaches the per-
formance of its non-oblivious counterpart, and is asymptotically better (in expectation)
than Algorithm 4 even when m1 ∈ Ω(mc

2).

Algorithm 6: OC-Oblivious Set intersection (hashing)

Input: Sets S1 and S2 stored in external memory, with |S1| ≤ |S2|
Output: Set S = S1 ∩ S2, written to external memory.
obliviously shuffle S1; . applying random tags

obliviously shuffle S2;
Call Algorithm 3, hashing each element of S2 to a table H, and searching for
each element of S1 in H, matching random tags;

Theorem 5.2. Algorithm 6 is OC-Oblivious, according to Definition 4.2, when o-
neighboring inputs (I, I ′) have m1 = m′1 and m2 = m′2, and where we have access
to an ideal oblivious shuffle algorithm o-shuffle, and a truly random hash function.

Proof. As in the proof of Theorem 5.1, we can assume that the shuffle step of this
algorithm is fully oblivious. We now show that, given the o-shuffled sets Sp1 and Sp2 , the
call to Algorithm 3 is OC-oblivious.

We assume that in place of a hash function we have a random oracle that maps our
input space onto our hash table. Given that we have a truly random hash function,
each element of Sp2 is hashed to each bucket of H with equal probability, so we have
m2 · |H| equally likely hash tables. When searching for the elements of Sp1 in the hash
table, elements not in S are also hashed to each bucket of H with equal probability,

1
|H|·(m1−m) . Finally, since Sp1 and Sp2 are sorted according to their random tags, there

are
(
m1

m

)
and

(
m2

m

)
ways the elements of S can be distributed in the respective input

sets.

For every input I, and every subset, B, of all possibly binary-search access-patterns
on inputs with the same dimensions (m1,m2,m), we have

Pr[A(I) ∈ B] =
1

(|H|)2 ·m2 · (m1 −m) ·
(
m1

m

)
·
(
m2

m

) · |B|.
Since |H| depends on m2 this gives us Pr[A(I) ∈ B] = f(m1,m2,m, |B|). Therefore,
if we have two o-neighboring inputs I and I ′ with m1 = m′1, m2 = m′2 and, by the

20

o-neighbor definition, m = m′, then for every subset, B, of all possibly binary-search
access-patterns on inputs with the same dimensions, we have

Pr[A(I) ∈ B] = f(m1,m2,m, |B|) = f(m′1,m
′
2,m

′, |B|) = Pr[A(I ′) ∈ B].

Since the shuffle phase is fully oblivious by definition, Algorithm 6 is therefore OC-
oblivious by Definition 4.2. �

5.4 δ-statistically Oblivious Set Intersection

An alternative relaxation on obliviousness is δ-statistical obliviousness, as described in
Definition 2.3. This allows some small difference in the distribution of access-patterns
between two inputs of the same size, or, some small probability of privacy failure. We
have developed the following algorithms with this in mind, however it is important to
note that calculating their δ values, and thus proving their level of obliviousness, was
outside the scope of this small project. They are presented as a demonstration of novel
techniques to be explored further in future work.

The security guarantees of Algorithms 5 and 6 can be improved by concealing the
size of the intersection in some way. For example, by marking the items in the original
sets when they are in the intersection, and later sorting based on these marks, or by
outputting some dummy block for unsuccessful searches. These methods do not provide
full obliviousness because of the access-patterns during the searches, but we predict
they do provide some acceptable probability of privacy failure. The following algorithms
improve on their efficiency further by obliviously shuffling only S1, and relying on the
randomness of random tags, and the fact that |S2| is larger than |S1|, with many elements
not in S, to obscure most of the information that is revealed by the non-oblivious
algorithms.

5.4.1 Binary-search based algorithm

Algorithm 7 relies on binary-search. Like Algorithm 5 this algorithm depends on an
oblivious shuffle, however more like the non-oblivious binary-search algorithm, Algo-
rithm 2, it is only the smaller of the two sets that is shuffled. The outcome of the
oblivious shuffle is that S1 is sorted according to random tags. A random tag is cal-
culated for each item in S2 based on the same function used during the shuffle, and
we search for these in shuffled S1. To conceal which items in S2 are contained in the
intersection, each binary-search is continued to the same depth, using random coin-flips
if necessary. If we model the binary-search process as a binary-tree, we can imagine
that when a match is found (at a non-leaf node) we continue down the tree randomly
until we reach a leaf node, as shown in Figure 2. In order to maintain the intersection
set, items in S1 must be marked in some way, so there must be space for an additional
‘marker’ bit when random tags are applied. Finally, after searching for each element
of S2, S1 is obliviously sorted (or shuffled and then scanned) in order that the marked
elements appear at the start of the list. The complexity of Algorithm 7 depends on the
shuffle used. If we shuffle using an oblivious sort, we have an overall time complexity
of O(m1 logm1) +O(m2 logm1) +O(m1 logm1) = O(m2 logm1), and we use additional
space O(m1) for the shuffled copy of S1.

This algorithm is not fully oblivious because the distribution of elements of S2 into the
modelled leaf-nodes of our binary-tree reveals some information about which elements

21

Algorithm 7: δ-Oblivious Set intersection (binary-search)

Input: Sets S1 and S2 stored in external memory, with |S1| ≤ |S2|
Output: Set S written to external memory. |S| = m1 + 1. S[0] is a size variable

m, S[1..m] contains S1 ∩ S2, and S[m+ 1..m1] contains
non-intersection elements of S1.

m← 0;
S ← append([m], S1);
obliviously shuffle S[1..m1]; . Applying random tags

for i← 0 to m2 − 1 do
s2 ← read(S2[i]); . Extended binary-search

l← 1; r ← m1;
while l ≤ r do

m←
⌊
l+r
2

⌋
; s1 ← read(S[m]);

if s1 < s2 then
write(S[m], s1); l← m+ 1;

else if s1 > s2 then
write(S[m], s1); r ← m− 1;

else
mark s1; write(S[m], s1); . s2 found

while l ≤ r do . Simulate search to completion

m←
⌊
l+r
2

⌋
; s1 ← read(S[m]);

c← random bit;
if c = 0 then

write(S[m], s1); l← m+ 1;
else

write(S[m], s1); r ← m− 1;

write(S[0],m);
return S;
obliviously sort S[1..m1] ; . s.t. marked entries appear at the

beginning

are in the intersection. Only ≈ log(m1) items mapped to each leaf node can be in the
intersection, as that is the number of elements from S1 that appear on any path. For
example, in Figure 2 a maximum of 3 intersection elements can map to the node tagged
1, or 4 to the node tagged 7. Specifically, for any subset A ⊆ S2 all mapped to a given
leaf node with depth d, at most d+1 elements of A can be in S. With that information,
the adversary knows that, if |A| > d+ 1, there must be at least |A| − (d+ 1) items in A
not in S.

We can show that Algorithm 7 is not fully oblivious by constructing a subset S
of access-patterns such that some input I has Pr[A(I) ∈ S] = 0. Consider two o-
neighboring inputs I = {S1, S2} and I ′ = {S1, S′2}, where the size of the intersection
m ≥ logm1. Take the indexes of the elements of S in the list representation of S2
to be loc = {i0...im−1} and those of S′2 to be loc′ = {i′0...i′m−1}, with loc ∩ loc′ = ∅.
We construct a subset S of possible access-patterns where all items in loc are mapped
to the same leaf node of the binary-tree. In that case, we have Pr[A(I) ∈ S] = 0
and Pr[A(I ′) ∈ S] > 0. Since Pr[A(I) ∈ S] > Pr[A(I ′) ∈ S], this algorithm is not
fully oblivious. However, we hope to bound the latter by some negligible δ such that

22

Figure 2: A binary-search-tree model of a modified binary-search from Algorithm 7.
Here we are searching in a list tagged [1..10] for the element with tag 8. This element is
marked and we continue down the tree according to the labelled ‘random bits’, ending
at the element tagged 7.

Pr[A(I) ∈ S] ≤ Pr[A(I ′) ∈ S]+δ, fulfilling the requirements of δ-statistical obliviousness
in Definition 2.3.

The method of mapping elements randomly to leaf nodes of a binary-tree has simi-
larities to methods used in Path ORAM [9].

5.4.2 Hash based algorithm

Algorithm 8: δ-Oblivious Set intersection (hashing)

Input: Sets S1 and S2 stored in external memory, with |S1| ≤ |S2|
Output: Set S written to external memory. |S| = m1 + 1. S[0] is a size variable

m, S[1..m] contains S1 ∩ S2, and S[m+ 1..m1] contains
non-intersection elements of S1.

m← 0;
obliviously shuffle S1; . applying random tags

H ← hash(S1);
for s ∈ S2 do

if s ∈ H(S1) then
mark S; . Mark matching record in H

S ← append([m], [s : s ∈ H]);
S ← obliviously sort S[1..m1]; . s.t. marked entries appear first

return S;

Algorithm 8 is instead inspired algorithms 3 and 6. S1 is again shuffled and is then
hashed into a table based on a hash function computed on random tags. Random tags
are calculated for the items from S2 are these searched for in the table. When we have

23

O(1) private memory, the algorithm completes in O(m1 logm1)+O(m2) expected I/Os.
With O(

√
m1) private memory we can perform the shuffle step in O(m1) time, so we

have overall performance of O(m2) expected I/Os.

Here we have built the hash table based on the smaller of the sets rather than the
larger (as in Algorithms 3 and 6) for two reasons. First, efficiency gains from shuffling
only one set are achieved only by shuffling the smaller set. Second, by hashing S1 we
have a smaller hash table, |H| = Θ(m1); when searching for elements of S2 in H we
have an average of a = m2

|H| items hashed to each bucket, since m2 � m1 ⇒ a� 1, this
adds additional noise to the access-pattern, with many items from S2 hashed to each
bucket.

The obliviousness in this case is again compromised by S2 not being shuffled. Several
information leaks, as well as possible mitigating alterations, are identified:

1. By observing the hashing of S1, the adversary knows how many elements are in
each bucket of the H. Consider some empty bucket of H: any elements in S2
hashed to that bucket can be excluded as an element of S. An additional shuffle
step, whereby the hash table itself is padded with dummy values and shuffled, to
remove this concern.

2. Similarly, consider some bucket of H containing some x number of elements from
S1: of the group of y elements from S2 hashed to that bucket, the adversary knows
that at most x of them are in S. Capping the size of buckets, and padding each
bucket to this size, would result in a more even distribution of the probabilities
of each element of S2 being in the intersection, but does not stop the grouping
effect. This solution also adds to the I/O complexity of the algorithm, and adds a
possibility of failure when a bucket overflows.

3. We also must consider how the buckets are searched, if there are several elements
from S1 within a bucket, and a search for some s ∈ S2 hashed to that bucket
completes before they have all been compared, the adversary knows that s ∈ S2.
This can be avoided by ensuring that every element of a bucket is compared during
a search, a similar principle to extending the binary search in Algorithm 7.

Further analysis is required to determine the effects of these leaks and alterations on a
δ privacy guarantee and, in the case of alterations, the efficiency of the algorithm.

24

6 Conclusion

We have provided a background on oblivious algorithms and defined a new security guar-
antee, output constrained (OC) obliviousness. We have applied this definition, drawing
on common set intersection algorithms, to develop novel OC-oblivious set intersection
algorithms based on binary-search and hashing. We have also considered an alternate
relaxation, δ-statistical obliviousness and made steps toward developing more efficient
set intersection under this definition.

Our results are encouraging, with OC-oblivious set intersection algorithms outper-
forming a fully oblivious counterpart when allowed a private memory of size O(

√
n).

These results, along with analysis of the definitions of neighboring inputs under various
obliviousness constructions, suggest that OC-obliviousness can provide improved effi-
ciency while maintaining a strong security guarantee. The small scope of this project
did not allow us to perform a more in-depth analysis of the security provided by our
definition, or to prove any lower bounds on performance. We also took steps towards
developing even more efficient δ-statistically oblivious set intersections, but were not
able to prove they had negligible δ bounds on privacy failure.

These limitations open up a number of avenues for further enquiry:

• Applying our OC-oblivious security definition to develop algorithms for a wider
range of problems

• Attempting to improve OC-oblivious set intersection with smaller private memory

• Exploring fast set intersection techniques from information retrieval [25, 26, 27] in
OC-oblivious set intersection, as these rely on both sets being pre-sorted, which is
the case for random tags when both sets are shuffled

• Proving lower bounds for set intersection under all the presented security defini-
tions

• Further analysis of our (possibly) δ-statistically oblivious set intersection algo-
rithms

• Composition of our OC-obliviousness definition with DP-obliviousness, with the
outlook of further efficiency improvements.

We hope that this work will provide a wider range of more efficient options for access-
pattern privacy, both in set intersection and further afield.

25

References

[1] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure on search-
able encryption: ramification, attack and mitigation,” in NDSS, vol. 20, p. 12,
2012.

[2] K. E. Batcher, “Sorting networks and their applications,” in SJCC, pp. 307–314,
AFIPS, 1968.

[3] M. Ajtai, J. Komlós, and E. Szemerédi, “An O(n log n) sorting network,” in STOC,
pp. 1–9, ACM, 1983.

[4] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia, “Privacy-
preserving group data access via stateless oblivious RAM simulation,” in SODA,
pp. 157–167, SIAM, 2012.

[5] G. Asharov, T. H. Chan, K. Nayak, R. Pass, L. Ren, and E. Shi, “Bucket oblivious
sort: An extremely simple oblivious sort,” in SOSA, pp. 8–14, SIAM, 2020.

[6] O. Ohrimenko, M. T. Goodrich, R. Tamassia, and E. Upfal, “The Melbourne shuffle:
Improving oblivious storage in the cloud,” in ICALP, pp. 556–567, EATCS, 2014.

[7] O. Goldreich, “Towards a theory of software protection and simulation by oblivious
RAMs,” in STOC, pp. 182–194, ACM, 1987.

[8] R. Ostrovsky, “Efficient computation on oblivious RAMs,” in STOC, pp. 514–523,
ACM, 1990.

[9] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas, “Path
ORAM: an extremely simple oblivious RAM protocol,” in CCS, pp. 299–310, ACM
SIGSAC, 2013.

[10] S. Tople, H. Dang, P. Saxena, and E.-C. Chang, “Permuteram: Optimizing obliv-
ious computation for efficiency.,” IACR Cryptol. ePrint Arch., vol. 2017, p. 885,
2017.

[11] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious
RAMs,” Journal of the ACM (JACM), vol. 43, no. 3, pp. 431–473, 1996.

[12] N. Pippenger and L. G. Valiant, “Shifting graphs and their applications,” Journal
of the ACM (JACM), vol. 23, no. 3, pp. 423–432, 1976.

[13] T. H. Chan, K.-M. Chung, B. M. Maggs, and E. Shi, “Foundations of differentially
oblivious algorithms,” in SODA, pp. 2448–2467, SIAM, 2019.

[14] S. Wagh, P. Cuff, and P. Mittal, “Differentially private oblivious RAM,” PoPETs,
vol. 2018, no. 4, p. 64, 2018.

[15] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer and
System Sciences, vol. 28, no. 2, pp. 270 – 299, 1984.

[16] Z. Chang, D. Xie, and F. Li, “Oblivious RAM: a dissection and experimental eval-
uation,” Proc. VLDB Endow., vol. 9, no. 12, p. 1113–1124, 2016.

[17] J. Allen, B. Ding, J. Kulkarni, H. Nori, O. Ohrimenko, and S. Yekhanin, “An
algorithmic framework for differentially private data analysis on trusted processors,”
in NeurIPS, pp. 13635–13646, 2019.

26

[18] K. G. Larsen, T. Malkin, O. Weinstein, and K. Yeo, “Lower bounds for oblivious
near-neighbor search,” in SODA, pp. 1116–1134, SIAM, 2020.

[19] J. Seiferas, “Sorting networks of logarithmic depth, further simplified,” 2006.

[20] M. T. Goodrich, “Zig-zag sort: A simple deterministic data-oblivious sorting algo-
rithm running in O(n log n) time,” in STOC, pp. 684–693, ACM, 2014.

[21] J. Katz and Y. Lindell, Introduction To Modern Cryptography. CRC Press, 2015.

[22] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity
in private data analysis,” in TCC, p. 265–284, IACR, 2006.

[23] X. He, A. Machanavajjhala, C. Flynn, and D. Srivastava, “Composing differential
privacy and secure computation: A case study on scaling private record linkage,”
in CCS, pp. 1389–1406, ACM, 2017.

[24] A. Arasu and R. Kaushik, “Oblivious query processing,” in ICDT, 2014.

[25] R. Baeza-Yates, “A fast set intersection algorithm for sorted sequences,” in CPM,
pp. 400–408, 2004.

[26] J. Barbay, A. López-Ortiz, T. Lu, and A. Salinger, “An experimental investigation
of set intersection algorithms for text searching,” Journal of Experimental Algorith-
mics (JEA), vol. 14, pp. 3–7, 2010.

[27] B. Ding and A. C. König, “Fast set intersection in memory,” Proc. VLDB Endow.,
vol. 4, no. 4, 2011.

27

