
Differential Privacy Under a Constrained

Dynamic Database Model

by

Alex Jacey Ligthart-Smith

ORCID: 0000-0002-3846-9061

A thesis submitted in total fulfilment for the

degree of Master of Philosophy

in the

School of Computing and Information Systems

Faculty of Engineering and Information Technology

THE UNIVERSITY OF MELBOURNE

July 2024

Abstract

The collection, storage, and use of sensitive data often requires a trade-off between indi-

vidual privacy and public utility. Differential privacy (DP) formalises this trade-off, for

releasing information about sensitive data, by providing provable privacy guarantees for

individual dataset participants. There is a wealth of literature proposing DP algorithms,

with good utility, for static datasets; however, privacy and accuracy losses accrue over

multiple releases. In dynamic settings, where the dataset is growing or changing over

time, the same queries are likely repeated as the dataset changes, requiring large numbers

of private releases. Dynamic DP is an active area of research, with most work consider-

ing data streams, where each entry is fixed once it is added, or trajectory data, with a

separate stream of updates for each individual; databases where records are updated over

time, with only the latest update available for analysis, are common in practice but less

thoroughly researched in the DP literature.

In this thesis, we consider a setting where the set of individuals in the database is fixed,

and one individual’s state is updated per unit of time. Prior to introducing our model,

we present a taxonomy of the models used in key dynamic DP papers. We classify these

models primarily according to their update types, and further distinguish them according

to their privacy definitions. This allows us to bring together previously fragmented research

into a cohesive framework.

We then introduce our fixed-size dynamic database (FSDD) model. We provide a base

mechanism, τ -RQ, for repeating the same query after each update to the FSDD. Using

properties of the FSDD model, we can utilise existing results from static DP to determine

the optimal query frequency in the worst case, balancing the effects of random noise,

added to preserve privacy, with the accrued changes to the underlying database. We

extend τ -RQ to provide a mechanism to convert any static DP mechanism to the FSDD

setting, and employ this to provide a mechanism for answering interactively chosen queries.

Additionally, we modify existing techniques, based on the sparse vector technique (SVT),

to provide DP in the FSDD setting, for use as a baseline.

We give theoretical guarantees on the privacy and accuracy of our mechanisms. Exper-

imentally, we show that our τ -RQ mechanisms typically provide better accuracy than

i

Abstract

an SVT-based technique in the repeated query setting, and consistently provide better

accuracy that the SVT-based Private Multiplicative Weights (PMW) technique in the

adaptive query setting. We conclude that the characteristics of the FSDD model can be

effectively harnessed to provide good utility with mechanisms that are relatively simple to

implement.

ii

Declaration of Authorship

I, Alex Jacey Ligthart-Smith, declare that this thesis titled, ‘Differential Privacy Under

a Constrained Dynamic Database Model’ and the work presented in it are my own. I

confirm that:

■ The thesis comprises only my original work towards the Master of Philosophy; except

where indicated in the preface;

■ due acknowledgement has been made in the text to all other material used; and

■ the thesis is fewer than 50,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices as approved by the Research Higher Degrees Committee.

Signed:

Date:

iii

Acknowledgements

First and foremost I would like to thank my supervisors, Olya Ohrimenko and Tony

Wirth. Olya’s experience in the data privacy field has inspired my research and given

me confidence in my own work. Tony’s unwavering support has allowed me to pursue

research when I otherwise might not have believed I could. Additional thanks to my

Advisory Committee Chair, Alistair Moffat, for his thoughtful and pertinent advice.

Thank you to my best friend and life partner for staying by my side throughout my studies.

I am so lucky to have found you, and that we have held on to each other through all these

years. Thank you for feeding me and for making homes of our many houses through these

years. Thank you for listening to me complain and for reminding me that I can make it

through. To the rest of my chosen family, especially Joshua and Caspian, I couldn’t have

made it this far without you all.

Thank you to my parents: dad, for always believing in me; mum, for teaching me to

hope. To my siblings: Jasmine, for being my first role model; Jaffa, for surviving with me

and giving me the strength to continue. To my niblings: Jenna, for reminding me to be

curious; Morgan, for reminding me to take pride in my strengths; Juli, for reminding me

to laugh; and all three, for reminding me to be brave and to always be true to myself.

Finally, I would like to acknowledge that this work was made possible by the support of

an Australian Government Research Training Program Scholarship, as well as additional

funding from the University of Melbourne School of Computing and Information Systems

and Faculty of Engineering and Information Technology.

iv

Contents

Abstract i

Declaration of Authorship iii

Acknowledgements iv

List of Figures vii

List of Tables x

List of Algorithms xi

Abbreviations xii

Symbols and Functions xiii

1 Introduction 1

1.1 Contributions . 4

1.2 Outline . 6

2 Background and Related Work 8

2.1 Differential privacy for static data . 8

2.1.1 Data model . 9

2.1.2 Definitions . 9

2.1.3 Key results . 11

2.1.4 The Laplace mechanism . 13

2.1.5 Differentially private query sequences 15

2.2 Differential privacy for dynamic data . 21

2.2.1 Differential privacy for growing databases 22

2.2.2 Differential privacy for time-series data 25

2.2.3 Differential privacy for fully dynamic data 26

2.2.4 Alternative models . 30

3 The Fixed Size Dynamic Database Model (FSDD) 31

3.1 Database and privacy model . 32

3.1.1 Database model . 32

3.1.2 Privacy model . 33

3.1.3 Comparison to existing dynamic database models 35

3.2 Repeated queries under the FSDD Model 37

v

Contents

3.2.1 τ -frequency repeated queries on FSDD-T (τ -RQ) 38

3.2.2 τ -frequency repeated black box (τ -RBB) 44

3.2.3 Adaptive repeated queries on FSDD-T (ARQ) 46

4 Interactive Query Sequences 49

4.1 τ -RQ for interactive query sequences . 50

4.2 PMW-FSDD-T . 52

4.2.1 Case 1: no outer update rule . 55

4.2.2 Case 2: uniform outer update rule 59

4.2.3 Privacy guarantees . 62

4.3 PMW-FSDD-∞ . 63

5 Experimental Evaluation 65

5.1 Experiment setup . 65

5.1.1 Protocols . 66

5.1.2 Synthetic data . 66

5.1.3 Real data . 70

5.1.4 Queries . 71

5.2 Repeated query experiments . 74

5.2.1 Experimental results vs. theoretical bounds 75

5.2.2 Results on synthetic data streams 76

5.2.3 Results on real data with synthesised updates 80

5.3 Interactive query experiments . 81

5.3.1 Results on synthetic data and query streams 82

5.3.2 Results on real query stream . 85

5.4 Discussion . 86

6 Conclusions and Future Directions 89

6.1 Summary of contributions . 89

6.2 Future directions . 90

6.3 Conclusions . 93

Bibliography 94

vi

List of Figures

2.1 Example of a bitstream D and an event-level neighbouring bitstream D′.
Yellow cells indicate the effect of updates on the bitstrings and blue cells
indicate where neighbours differ. 23

2.2 Example of a growing database D and an event-level neighbouring database
D′ that differ at time t. Yellow cells indicate the effect of updates on the
databases and blue cells indicate where neighbours differ. 24

2.3 Example of a T -bounded time-series database D, with n users, at times
t = 1, 2, ..., T . Each table Dt represents the state of the database at time t,
with colums representing timestamps and rows representing users. We can
see that once a column is inserted, it remains static. 26

2.4 Example of neighbouring state update streams S and S′, and corresponding
database streams D and D′ with n = 4 users, where the neighbouring
subsets of update times are K = {1, 7} and K ′ = {5}, and neighbouring
users are (j, k) = (1, 3). Yellow cells indicate the effect of updates on the
databases and blue cells indicate where neighbours differ. 27

2.5 Example of a fully dynamic add/delete update stream S and neighbour-
ing stream S′, and corresponding histogram streams X and X ′ where his-
tograms are of size N = 4, and where xt is the state of the histogram at
time t. Yellow cells indicate the effect of updates on the histograms and
blue cells indicate where neighbours differ. 29

3.1 Example of neighbouring FSDD update streams U and U ′ and database
streams S and S′, with rows representing times and columns representing
individuals in the database. Databases have size n = 4, universe size N =
10, the number of updates are bounded by T = 11 and the databases differ
at user j = 3. Yellow cells indicate the effect of updates on the histograms
and blue cells indicate where neighbours differ. 33

3.2 Theoretical value of α for (α, β)-privacy guarantee of τ -RQ, with parameter
choices β = 0.01, T = 1000,∆q = 0.009 and various choices of ε, showing
minimum α values for each choice of ε. (τ, α) are marked for the minimum
α for each ε. 41

3.3 Theoretical value of α, split into decreasing and increasing components
f1 = ln(c/β) · c∆q/ε and f2 = (τ − 1)∆q, where c =

⌈
T
τ

⌉
, for (α, β)-

privacy guarantee of τ -RQ, with parameter choices ε = 1.0, β = 0.01, T =
1000,∆q = 0.009, showing the minimum α value for reference. 42

3.4 Comparison of discrete accuracy bound α and continuous αc, with param-
eter choices β = 0.01, T = 1000,∆q = 0.009, ε = 1.0, showing minimum α
and αc evaluated for τ ∈ {30, 31, .., 199, 200}. 45

4.1 Flow chart showing the high level operations of PMW-FSDD-T. 53

vii

List of Figures

5.1 Histograms over time for uniform data for a single random seed. Parameter
choices are N = 10, T = 1000, n = 1000. 68

5.2 Histograms over time for binomial synthetic data for a single random seed.
Parameter choices are N = 10, T = 10000, n = 1000. 69

5.3 Histograms over time for sharp-shift synthetic data for a single random
seed. Parameter choices are N = 10, T = 2000, n = 1000. 69

5.4 Histograms over time for Adult (Age) data stream for a single random seed. 71

5.5 Mean individual state value (in [1, N]) over time for uniform, binomial,
and sharp-shift synthetic data streams for a single random seed. Parameter
choices areN = 10 histogram buckets, T = 2000 time periods, and n = 1000
individuals. 72

5.6 Frequency of histogram buckets in kosarak queries, as proportion of all
queries, for various sized subsets and all queries. 74

5.7 Additive error of τRQ-FSDD experiment outputs for the mean function, for
various choices of τ , plotted against theoretical accuracy bound α. Param-
eter choices are β = 0.01, ε = 1.0, N = 10, T = 1000, n = 1000. Experiment
outputs show the mean of mean errors, max of max errors, and 99th per-
centile of max errors across 1000 trials for each sample frequency parameter τ . 75

5.8 High level process of repeated query experiments. 77

5.9 Comparison of τ -RQ and ARQ across multiple data/update distributions
(uniform, binomial, and sharp-shift) and query types (mean, histogram,
and count), with parameters ε = 1.0, T = 1000, n = 1000 fixed. Additive
error is taken first over all updates in a trial, then over all trials. 78

5.10 Comparison of τ -RQ and ARQ, for mean and histogram queries on uni-
form and binomial distributions, across a range of privacy parameters ε ∈
{0.25, 0.5, 1.0, 2.0}, and fixed update rounds T = 1000 and database size
n = 1000. 78

5.11 Comparison of τ -RQ and ARQ, for mean and histogram queries on uniform
and binomial distributions, across a range of update round counts T ∈
{100, 1000, 2000}, and fixed database size n = 1000 and privacy parameter
ε = 1.0. 79

5.12 Comparison of τ -RQ and ARQ, for mean and histogram queries on uni-
form and binomial distributions, across a range of database sizes n ∈
{103, 104, 105}, and fixed update rounds T = 1000 and privacy paramter
ε = 1.0. 79

5.13 Comparison of τ -RQ and ARQ across multiple data/update distributions
and query types, with paramaters taken from the Adult (Age) dataset. . . 81

5.14 Comparison of additive error (median over trials of mean over queries in
each trial) for τ -RH and PMW-FSDD-T for synthetic data streams and
various linear query sets. The queries in each round are chosen uniformly
at random from the query set, with the number of queries chosen uniformly
in [0..k]. All experiments have privacy parameter ε = 1.0, time bound
T = 1000 and number of individuals n = 1000. 83

5.15 Comparison of additive error (maximum over all queries in all trials) for
τ -RH and PMW-FSDD-T for synthetic data streams and various linear
query sets. The queries in each round are chosen uniformly at random from
the query set, with the number of queries chosen uniformly in [0..k]. All
experiments have privacy parameter ε = 1.0, time bound T = 1000 and
number of individuals n = 1000. 84

viii

List of Figures

5.16 Comparison of additive error (median across all trials of mean across all
queries in each trial) for τ -RH and PMW-FSDD-T for the binomial data
stream with optimised count queries. The queries in each round are chosen
uniformly at random from the query set, with the number of queries in each
round chosed uniformly in [0..1022]. Default parameter values are ε = 1.0,
T = 1000 and n = 1000. 85

5.17 Comparison of additive error (median across all trials of mean across all
queries in each trial) of the Kosarak query stream to the count query stream
(optimised, k = 511), range query stream (optimised, k = 45), and single
bucket count query stream (k = 10), for τ -RH and PMW-FSDD-T across
multiple data stream types (uniform, binomial, and sharp-shift). All exper-
iments have privacy parameter ε = 1.0, time bound T = 2000 and number
of individuals n = 1000. 86

5.18 Comparison of additive error (median across all trials of mean across all
queries in each trial) for τ -RH and PMW-FSDD-T for the binomial data
stream with Kosarak queries. Default parameter values are ε = 1.0, T =
2000 and n = 1000. 87

ix

List of Tables

2.1 Properties of dynamic databases used in various key papers mentioned in
Section 2.2. 22

3.1 Properties of dynamic databases used in various key papers mentioned in
Section 2.2, where n is the number of users, and the update types are add
(+), delete (−), change (⟲), and empty (⊥). 35

5.1 Attributes of the Adult data used in experiments 70

5.2 Queries used in repeated query experiments, for database D = D1, ..., Dn

or count histogram x = {x[1], ..., x[N]} where x[i] = |{j : D[j] = X [i]}|
over data universe X = {X [1], ...,X [N]}. Where X is ordinal, we assume it
indexed in ascending order. 71

5.3 Query sets used in interactive query experiments. 73

5.4 Sequence lengths and buckets per linear count query of Kosarak query
streams of size T = {100, 1000, 2000, 990002} 74

x

List of Algorithms

1 SVT (Algorithm 2 of Dwork and Roth [22]) 16

2 NumericSVT (Algorithm 3 of Dwork and Roth [22]) 17

3 Optimised NumericSVT (Algorithm 7 of Lyu et al. [53]) 18

4 PMW (Algorithm 6 of Dwork and Roth [22], adapted from Figure 1 of

Hardt and Rothblum [42]) . 20

5 NRQ: Naive repeated queries on FSDD-T 38

6 τ -RQ: τ -frequency repeated queries on FSDD-T 39

7 τ -RBB: τ -frequency repeated black box on FSDD-T 45

8 NSVT-FSDD: NumericSVT for FSDD (Based on Algorithm 3 of Dwork and

Roth [22]) . 46

9 ARQ: Adaptive frequency repeated queries on FSDD-T 47

10 τ -RH: τ -RQ for interactive query sequences 50

11 MSVT: Modified SVT subroutine (Based on Algorithm 6 (NSG) of Cum-

mings et al. [16] and Algorithm 3 (NumericSparse) of Dwork and Roth [22]) 53

12 PMW-FSDD-T . 54

13 Uniform public histogram update rule . 60

14 Uniform synthetic data stream generator . 67

15 Binomial synthetic update generator . 68

16 Sharp-shift synthetic data stream generator 70

17 Interactive stream generator . 73

xi

Abbreviations

DP Differential Privacy/Differentially Private

ε-DP Pure differential privacy

(ε, δ)-DP Approximate differential privacy

FSDD Fixed-Size Dynamic Database

FSDD-T FSDD with T -bounded updates

FSDD-∞ FSDD with infinite updates

MW Multiplicative Weights update method

PMW Private Multiplicative Weights algorithm

SVT Sparse Vector Technique

xii

Symbols and Functions

≈ Neighbouring databases (see page 10)

≈± Unbounded neighbours (see Definition 2.1.2)

≈⟲ Bounded neighbours (see Definition 2.1.3)

[a..b] Integers from a ∈ Z to b(> a) ∈ Z {a, a+ 1, ..., b− 1, b}
[n] Integers from 1 to n ∈ N [1..n]

[a]n List of n copies of a [a, a, ..., a] of length n

{ai}mi=n Stream of ais for times indexed from x to y {ax, ax+1, ..., ay−1, ay}
{ai} Shorthand when stream indices clear from context {ai}mi=n

(x)+ The ramp function max{0, x}
d± Add/delete only edit distance (see Definition 2.1.2)

∆f The ℓ1 sensitivity of function f (see Definition 2.1.4)

Lap (b) Laplace R.V. with scale b L ∼ Laplace(0, b)

RE(x∥y) Relative Entropy from x to y (see Definition 2.1.11)

xiii

Chapter 1

Introduction

Strong encryption can protect sensitive data while it is stored. But, what if we need to

provide information about that sensitive data to untrusted parties? Statistics, machine

learning models, and other information obtained from a data set can be utilised to reveal

specific details of the raw data. For example, Garfinkel et al. [38] show how to reconstruct

the details of individuals in a population from aggregated census data; Dinur and Nissim

[18] show how to reconstruct a database from noisy query answers, and Cohen and Nissim

[13] take this further, doing so even when the queries themselves are randomised. Data

privacy has become increasingly pertinent as the collection and sharing of detailed personal

data has proliferated; Statista have estimated that the volume of data created, captured,

copied, and consumed worldwide increased by a factor of over 30 in the decade from 2010-

20 alone [44]. While much of this data is used to increase convenience and efficiency in

the public and private sectors, and our everyday lives, its propagation also increases the

risk that our private information can reach the wrong hands. The effectiveness of machine

learning has benefited immensely from this abundance of data, and while the training data

is not directly represented in outputs, private information can still be leaked. For example,

Calandrino et al. [4] are able to infer the purchasing behaviour of individuals using the

recommendations given to another user, and Fredrikson et al. [36] infer individual genomic

markers from a machine learning model for personalised medication dosing.

Differential privacy (DP), first introduced by Dwork et al. [24], provides a rigorous frame-

work for provably guaranteeing the privacy of individuals’ data. Specifically, differentially

1

Introduction

private mechanism outputs reveal information about a dataset while bounding the prob-

ability that an adversary can infer anything about the data of any individual contributor

to the dataset. Dwork et al. [24] show that this privacy, however, must come at a cost to

accuracy, and as multiple DP releases are made using the data of an individual, such as

multiple queries on a single dataset, or queries on multiple datasets containing the same

individual, the privacy loss increases. Total privacy loss for an individual can be bounded,

by rationing a privacy budget between releases, but this comes at a cost to accuracy.

Many strategies have been developed to mitigate the effects of this privacy/accuracy trade-

off. Dwork et al. [23] give a definition of approximate, or (α, δ)-, differential privacy,

whereby improvements to accuracy are achieved at a cost of a small probability of privacy

failure. The sparse vector technique (SVT) was first conceptualised by Dwork et al. [25] to

construct sanitised datasets. Using SVT, a sequence of threshold queries can be answered,

with the privacy budget only diminished for the above threshold queries, maintaining a

fixed accuracy bound so long as the number of above threshold queries remains below some

constant. Hardt and Rothblum [42] utilised this technique in their private multiplicative

weights (PMW) mechanism, where the distribution of a dataset is learned over time using

the results of a sequence of queries, with both accuracy and privacy bounded for an

unbounded number of queries. SVT and PMW are designed to answer many queries on

a static dataset, where no records are added or changed during the query stream. But

what if the underlying data set is being modified in between queries? In this thesis, we

are interested specifically in dynamic databases. That is, a dataset that is shifting over

time, with queries answered between updates to the database.

Differential privacy in a dynamic setting was first studied by Dwork et al. [26] and Chan

et al. [9]. These works consider bitstreams, where a single bit of data arrives at each time.

They establish important bounds on the overhead of providing dynamic DP, and introduce

novel techniques that provide pan-privacy, a stronger model than DP that additionally

provides protection against adversarial intrusions into the centrally held data. Dwork et al.

[27] extended this work to consider infinite streams of categorical data, from finite data

universes of arbitrary size. This categorical setting has been further studied, for example,

Cummings et al. [15] provide black box mechanisms for converting static DP mechanisms

to the growing data setting, as well as a PMW mechanism for growing datasets. Perrier

et al. [58] and Wang et al. [66] provide mechanisms for streams of real-valued data, rather

than data from a finite universe. In these growing models, data values remain fixed once

2

Introduction

they are added to the stream. This limits the ability of mechanisms to take into account

the changing state or value of a single individual, such as when only the most recent data

value of any individual is relevant.

Time-series and trajectory data is a widely studied area of dynamic DP, particularly

relevant to the privacy of the internet of things. In this setting, each individual may

update their data value at each time, and it is either the most recent value or the temporal

patterns of the user updates that are of interest. This model was first studied by Rastogi

and Nath [60] in a distributed data setting, and has since received wide attention. Some

key works have included those of Fan and Xiong [31, 32] and Fan et al. [33, 34], who provide

mechanisms for real-time aggregate monitoring, and Kellaris et al. [49], who introduce a

sliding-window privacy definition for infinite streams within the time-series context.

There is less existing research in settings where only a single individual’s data is updated

at each time. Mir et al. [56] consider a fixed universe of individuals and a sequence

of single updates to some individual’s integer-valued state. They give mechanisms that

provide pan-privacy, so are limited in the types of queries they can answer by the fact

that the underlying data structure must itself be private. More recently, Qiu and Yi [59]

consider a data model whereby individual data points can be added to and deleted from

the database, but they do not consider the privacy implications of multiple entries or

updates representing the same individual. We consider a model similar to that of Mir

et al. [56], with a simpler and less restrictive privacy definition.

We define a dynamic database model with the following constraints: the set of users is

fixed, each user is in some state from a finite data universe, and a single user updates

their state at each time. For example, a sequence of scheduled reviews to the status of

some group of individuals. We call this the fixed-size dynamic database (FSDD) model,

and define privacy in terms of protecting all updates from any user. In this thesis we

primarily consider a further constrained model, FSDD-T , where the maximum number of

updates, T is known in advance, and use a pure, rather than approximate, definition of

DP, i.e. ε-DP. These constraints allow us to model a database as a histogram of counts

at each time t, and to bound the effect of each update by the maximum sensitivity of the

allowed queries, and thus ration the privacy budget in advance based on the maximum

number of updates. These qualities are particularly useful in allowing us to utilise existing

results about the composition of differentially private mechanisms, though the use of a

3

Introduction

pure DP definition limits this advantage. We are interested in determining the extent to

which we can leverage these constraints to improve the accuracy of differentially private

mechanisms in the FSDD setting. We consider both theoretical accuracy bounds and

empirical performance of mechanisms designed specifically for the FSDD setting, compared

to more generally applicable dynamic DP mechanisms.

1.1 Contributions

Taxonomy of dynamic DP models. Prior to introducing the FSDD model, we de-

scribe the results of a survey and analysis of the data and privacy models of key dynamic

DP papers. We bring together work that has been previously fragmented between various

venues and research areas, both theoretical and applied. Our analysis indicates that there

are three broad categories of dynamic data models present in the literature, growing, time-

series, and fully dynamic, based on the number and type of updates allowed at each time.

We create a taxonomy of the dynamic DP models in key papers, dividing them into these

categories and further distinguishing them by their time-bounds and privacy models.

FSDD model definition. We define the FSDD data and privacy models, distinguishing

it from the model of Mir et al. [56].

Algorithms. We provide DP mechanisms in the FSDD setting, and evaluate their per-

formance with both theoretical bounds and experimental results. First, we consider the

repeated query (A.K.A. continual release) setting, whereby a single query is applied to

the data after each update. Our mechanism for privately answering numerical queries,

the τ -frequency repeated query (τ -RQ), utilises the constraints of the FSDD model to

improve theoretical performance over basic composition, and give a method for choosing

the optimal frequency parameter τ . We prove that τ -RQ is ε-DP, with additive accuracy

as given below. Proofs of theorems presented here are given in the corresponding chapters.

Theorem 3.2.3. τ -RQ (Algorithm 6) is ε-differentially private.

Theorem 3.2.4. τ -RQ (Algorithm 6) is (α, β)-accurate for

α = ln

(
c

β

)
· c∆q

ε
+ (τ − 1)∆q , (1.1)

4

Introduction

where c =
⌈
T
τ

⌉
. That is, all outputs {at}T−1

t=0 are within ±α of the true answer to query q,

on database D at time t, with probability 1− β.

Our black box transformation, the τ -frequency repeated black box (τ -RBB) mechanism,

generalises this method to transform any static DP mechanism to the FSDD setting,

maintaining the privacy guarantee of the static mechanism (Theorem 3.2.7) and reducing

a static (α, β)-accuracy guarantee as given below.

Theorem 3.2.7. τ -RBB (Algorithm 7) is ε-differentially private.

Theorem 3.2.8. When instantiated with (α, β)-accurate mechanism M, τ -RBB (Algo-

rithm 7) is (α, β′)-accurate, where

β′ =

⌈
T

τ

⌉
β .

That is, all outputs {at}Tt=0 are within ±α of the true function f on database D at time t

with probability 1− β′.

Additionally, we modify SVT to apply in the FSDD setting and utilise it, within our

adaptive-frequency repeated query (ARQ) mechanism, to provide DP in the repeated

query FSDD setting.

Next, we consider interactive queries, where some sequence of linear queries are applied

between each update. The set of possible queries is known in advance but the specific

sequences are chosen adaptively. In this setting, we show that τ -RBB can be used to

produce ε-differentially private histograms for answering linear queries, with accuracy

given below.

Theorem 4.1.1. τ -RH (Algorithm 10) is ε-differentially private.

Theorem 4.1.2. τ -RH (Algorithm 10), when limited some set of linear counting queries

Q ⊆ {0, 1}N , is (α, β)-accurate for

α =
2c

ε
ln

(
c · wmax

β

)
+ (τ − 1) , (1.2)

where c =
⌈
T
τ

⌉
, wmax = maxq∈Q

∑N
i=1wq[i], where wq[i] is the weight ∈ {0, 1} of histogram

bucket i for query q. That is, all outputs {at}Tt=0 are within ±α of the true answer to query

q on database Dt, at time t, with probability 1− β.

5

Introduction

In addition, we modify PMW to provide DP in both the bounded and unbounded time

FSDD settings: PMW-FSDD-T and PMW-FSDD-∞.

Experimental evaluation. Experimentally, we show that our τ -RQ based mechanisms

provide better accuracy than SVT-based mechanisms across a broad range of scenarios. We

generate synthetic data to observe the accuracy of our mechanisms, and the effectiveness

of our method for optimising τ , when the distribution is relatively stable and when it is

changing significantly over time. In the repeated query setting, we observe that τ -RQ

and ARQ have similar accuracy for low-entropy synthetic data, while τ -RQ is significantly

more accurate for high entropy data and for a real data set drawn from the US census.

In the interactive query setting, we see a stark difference, with our τ -RQ mechanism

outperforming PMW by a large margin across all experiments.

1.2 Outline

The remaining chapters of this thesis are organised as follows. Chapter 2 introduces rel-

evant background on differential privacy for both static and dynamic data. Section 2.1

covers key definitions and results in static differential privacy, and describes the standard

differentially private mechanisms and results used and adapted in later chapters. This

includes both one-shot mechanisms and adaptive techniques for privately answering in-

teractive sequences of queries. Section 2.2 describes existing models and techniques for

differentially private analysis of dynamic data. We organise the models according to a

number of characteristics, and summarise key definitions and results for each category.

In Chapter 3 we define our fixed-size dynamic database (FSDD) model, situating it within

the framework of Section 2.2 and providing updated privacy definitions under this model.

We then provide mechanisms for repeating a single query after each database update; the

τ -RQ mechanism and ARQ, which utilises SVT. We prove the privacy of these mechanisms

and provide theoretical bounds on accuracy. In Chapter 4 we provide a τ -RQ mechanism

for privately answering interactive sequences of queries, and a modified PMW mechanism.

We prove the privacy of these mechanisms.

6

Introduction

In Chapter 5 we present the results of experimental analysis of the mechanisms introduced

in Chapter 3 and Chapter 4. We show that our τ -RQ mechanisms demonstrate a significant

accuracy advantage over both our SVT-based mechanism and PMW.

Finally, Chapter 6 brings together the theoretical and experimental results. We discuss

the implications of these results as well as the limitations and future directions of the

research.

7

Chapter 2

Background and Related Work

This chapter introduces the fundamentals of differential privacy relevant to the mechanisms

and proofs that follow in the thesis, and the current landscape of differential privacy for

dynamic databases as context for these mechanisms. Section 2.1 lays out definitions, and

basic results and mechanisms, for differential privacy in the static setting. Section 2.2

gives existing models for differential privacy in the dynamic setting, as well as some key

results and mechanisms that have inspired the work described in the rest of the thesis.

The models described have various characteristics that we will draw from in developing

our model, which may be considered a special case of a number of these existing models.

2.1 Differential privacy for static data

Differential privacy (DP), was first described by Dwork et al. [24], and formalised by

Dwork [20], as a continuation of previous work into private statistical databases [18, 21].

It provides a rigorous mathematical definition to quantify and bound the privacy risk

to individuals whose data are used to calculate answers to statistical queries. Alternative

privacy definitions exist in the literature, such as k-anonymity [63] and l-diversity [54], each

with their own assumptions and limitations. For details of alternative privacy definitions

and their vulnerabilities, see the survey by Fung et al. [37]. Any data privacy definition is

inherently limited by the fact that perfect semantic security [17, 40], whereby an attacker

cannot learn anything about an individual in a database through mechanism outputs, is

8

2.1 Differential privacy for static data

impossible while maintaining meaningful utility [20]. As such, differential privacy provides

a probabilistic guarantee on individual privacy.

Early work in differential privacy focused on the static setting, where privacy is guaranteed

for a single, unchanging, data set. Most definitions and theorems presented in this section

are taken from the seminal textbook in differential privacy by Dwork and Roth [22], which

brings together much of the early work in the field.

2.1.1 Data model

First we describe the static data model that will be used throughout, and later adapted

to dynamic settings.

Consider a data universe X , and some database D ∈ X n such that an individual data

point can be indexed as D[i]. If the universe is discrete and finite, its size is |X | = N and

D can be represented as a histogram x ∈ NN . Let [n] represent the list of numbers [1..n].

The histogram x has N buckets, each representing an element of X , such that, for each

i ∈ [N] and j ∈ [n], x[i] = |{j : D[j] = Xi}|, the count of elements in D with value Xi. For

example, the dataset D = [1, 3, 3, 2, 3, 1, 3, 1, 4, 3] drawn from universe X = 1, 2, 3, 4 can

be represented as histogram x = [3, 1, 5, 1].

2.1.2 Definitions

Here we formally define differential privacy, and the utility of differentially private mech-

anisms, as described in key works in the literature.

Differential privacy is defined over the probability distributions of possible outputs of a

randomised mechanismM.

Definition 2.1.1 (Differential privacy, from Definition 2.4 of Dwork and Roth [22]).

A randomised algorithm M is (ε, δ)-differentially private if, for any two neighbouring

databases D ≈ D′ and any subset of possible outputs S,

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ , (2.1)

where ε > 0 and δ ≥ 0. When δ = 0, we say thatM is ε-differentially private.

9

2.1 Differential privacy for static data

This thesis considers only ε-differential privacy, also known as pure differential privacy,

as first introduced by Dwork et al. [24] and formalised by Dwork [20]. We give the full

definition of (ε, δ)-differential privacy, first introduced by Dwork et al. [23], also known as

approximate differential privacy when δ > 0, for ease of reference.

Neighbouring databases are defined with respect to the specific privacy goal of a mech-

anism. There are two widely accepted definitions of neighbouring databases, for mech-

anisms designed to preserve the privacy of single individuals, in the static setting. In

the unbounded neighbour model, a single record is added or deleted, while the bounded

neighbour model allows a single record to be substituted.

Definition 2.1.2 (Unbounded neighbours). Static databases D ∈ X n and D ∈ X n±1 are

unbounded neighbours, denoted D ≈± D′ if there is some i ∈ [n] such that D′ = D/D[i], or

D = D′/D′[i], or, the add/delete distance d±(D,D
′) = 1. Here, the add/delete distance d±

is the edit distance when only additions and deletions are allowed. That is, d±(D,D
′) = x

if and only if D′ can be derived from D by performing a sequence of x additions and

deletions.

Definition 2.1.3 (Bounded neighbours). Static databases D,D′ ∈ X n are bounded neigh-

bours, denoted D ≈⟲ D′ if, for some j ∈ [n], D[i] = D′[i] for all i ∈ [n] \ j, or the

Hamming distance dH(D,D′) = 1.

In general, databases are neighbouring if d(D,D′) ≤ 1 for a given distance measure d. To

prove privacy guarantees, the neighbour definition used must be taken into account. For

example, converting directly from the bounded to unbounded neighbour model requires

a definition of privacy where d(D,D′) > 1, since dH(D,D′) = 1 =⇒ d±(D,D
′) = 2

because changing the value of a record requires both a deletion and an addition.

Throughout the thesis we will refer to the sensitivity, ∆, shorthand for the ℓ1-sensitivity,

of queries and functions.

Definition 2.1.4 (ℓ1-sensitivity, from Definition 2 of Dwork et al. [24]). The ℓ1-sensitivity,

∆f , of a function f : X n → Rk, outputting a vector of length k, is:

∆f = max
D≈D′

∥f(D)− f(D′)∥1 = max
D≈D′

(
k∑

i=1

|(f(D))[i]− (f(D′))[i]|
)
.

10

2.1 Differential privacy for static data

That is, the sensitivity ∆f is the maximum ℓ1-norm distance between the function f

applied to any two neighbouring databases. For example, take a discrete universe X and

function counting the frequency of a single value, that is count(D, a) := |{i : Di = a}|
for some a ∈ X . The ℓ1-sensitivity ∆count = 1, under both the bounded and unbounded

neighbour definition, since adding, deleting, or changing a single database element cannot

change the frequency of a single value by more than ±1.

We will also be interested in describing the accuracy of numeric outputs of mechanisms in

terms of (α, β)-accuracy.

Definition 2.1.5 (Numeric accuracy, adapted from Definition 3.10 of Dwork and Roth

[22]). A mechanismM is (α, β)-accurate with respect to function f if:

Pr [|M(D)− f(D)| ≥ α] ≤ β .

That is,M is (α, β)-accurate if, with probability at least 1− β, an output ofM is within

±α of the output of the function, f , applied to D.

2.1.3 Key results

Now we describe key results from the static DP literature that are relevant to the thesis.

Group privacy. Consider the case where the privacy of either an individual whose

data appears multiple times in a database, or for multiple correlated individuals, such

as a family, must be protected. This cannot be guaranteed by the standard previous

definitions, which protect only an individual record in the database. Group privacy, first

described by Dwork et al. [24], defines differential privacy for databases where up to k

correlated records appear.

Theorem 2.1.1 (Group privacy, Theorem 2.2 of Dwork and Roth [22]). Let M be an

ε-differentially private algorithm under Definition 2.1.1. Then, for a group size k, M is

kε-differentially private.

k-neighbours are databases D ≈k D′ where, for some k, d(D,D′) ≤ k. Theorem 2.1.1

allows a guarantee of ε-differential privacy for k-neighbouring databases using a mechanism

that is (ε/k)-differentially private for 1-neighbouring databases.

11

2.1 Differential privacy for static data

Post-processing. Once a private output is received, an analyst or adversary may wish

to apply transformations to the output. There is a simple theorem that guarantees the

privacy of such transformations of the output of a differentially private mechanismM.

Theorem 2.1.2 (Post-processing, Proposition 2.1 of Dwork and Roth [22]). Let M be a

randomised algorithm that is ε-differentially private. Any arbitrary randomised mapping

on the output ofM is ε-differentially private.

That is, any transformations to a differentially private output, provided they do not require

additional access to the private information, preserve differential privacy guarantees. For

example, rounding the output of a differentially private mechanism does not diminish its

privacy guarantee.

Composition. Now consider mechanisms that require multiple, sequential accesses to

a private database. This is known as composition. Differential privacy is proven to be

maintained under composition, with privacy loss growing linearly with the number of

queries for pure DP.

Theorem 2.1.3 (Basic composition, Corollary 3.16 of Dwork and Roth [22]). LetM[k] =

(M1(D), ...,Mk(D)) be a sequence of (εi, δi)-differentially private randomised mechanisms,

for i ∈ {1, ..., k}. Then M[k] is (ε′, δ′)-differentially private where ε′ =
∑k

i=1 εi and

δ′ =
∑k

i=1 δi.

Basic composition allows the composition of multiple differentially private mechanisms

applied to a single database [24]. Dwork et al. [28] further show that basic composition

can be extended to the k-fold adaptive case, where the input to each of the k mechanisms

may be a different database, and the mechanisms and databases chosen adaptively. For

example, if an ε1-differentally private mechanism is performed on a census database, then

an ε2-differentially private mechanism is performed on a tax database for the same country

and year, (ε1 + ε2)-differential privacy is preserved for any individual appearing in both

databases.

The efficiency of composition can be improved for approximately differentially private

mechanisms, that is, (ε, δ)-differentially private with δ > 0 [28]. This is known as advanced

composition. Since the mechanisms presented in this thesis preserve pure differential pri-

vacy, we do not present the advanced composition theorem here.

12

2.1 Differential privacy for static data

2.1.4 The Laplace mechanism

Using the formal definition of differential privacy, mechanisms can be designed for privately

answering queries on databases, with provable privacy guarantees. This section describes

some key mechanisms for answering single queries on static data, based on the first dif-

ferentially private mechanism described by Dwork et al. [24], the Laplace mechanism.

This mechanism provides differentially private, noisy answers to queries with real-valued

answers using noise drawn from the Laplace distribution.

Definition 2.1.6 (The Laplace mechanism, from Definition 3.3 of Dwork and Roth [22]).

Given a function f : X n → Rk, the Laplace Mechanism,MLap, is defined as:

MLap(D, f, ε) = f(D) + (L1, ..., Lk) ,

where each Li ∼ Laplace(0,∆f/ε).

The Laplace mechanism is ε-differentially private, and has accuracy given in Theorem 2.1.4.

Theorem 2.1.4 (Accuracy of the Laplace mechanism, from Theorem 3.8 of Dwork and

Roth [22]). The Laplace Mechanism is (α, β)-accurate for:

α =
∆f

ε
ln
k

β
.

An ε-differentially private mechanism for answering count queries can be given by:

Mcount(D, c) := count(D, c) + Lap
(
ε−1
)
,

where Lap (a) is shorthand for L ∼ Laplace(0, a). This shorthand will be used through-

out. By Theorem 2.1.4, Mcount is (ε−1 ln(β−1), β)-accurate. For example, with ε := 1,

β := 0.05, Mcount(D, a) will give an answer within ± ln 0.05−1 ≈ 3 of the true answer

count(D, a) with at least 95% probability. There is a clear trade-off between privacy and

accuracy, with a linear relationship between α and ε. This becomes particularly important

when composing mechanisms, where bounding the total privacy loss limits the achievable

overall accuracy.

If all counts are of interest, rather than an answer to a single counting query, the Laplace

Mechanism can be used to output a synthetic histogram. Using the composition theorem,

13

2.1 Differential privacy for static data

a naive method would be to release N count queries, each with privacy budget ε/N .

This approach would have large noise, proportional to the size of the histogram. Better

accuracy can be achieved, without loss to privacy, by using non-private information about

the nature of the histogram. Since each individual data point occurs in only one histogram

bucket, the number of buckets differing between neighbouring databases can be bounded,

depending on the neighbour definition used.

Definition 2.1.7 (The Laplace perturbation algorithm for histograms, from Example

3.2 of Dwork and Roth [22]). Given a database D ∈ X n, with corresponding histogram

x ∈ NN , the Laplace perturbation algorithm,MLPH, outputsMLPH(D) = x̂ where:

x̂[i] = x[i] + Lap

(
∆x

ε

)
.

The value of ∆x depends on the privacy definition. For unbounded privacy ∆x = 1 and

for bounded ∆x = 2.

For two bounded-neighbouring databases D ≈⟲ D′ in X n, a single user is counted in a

different histogram bucket, so at most two histogram buckets will differ, and ∆x = 2.

Thus, by the properties of the Laplace mechanism, noise drawn from Lap (2/ε) can be

added to produce a noisy version (x̂), preserving ε-differential privacy, with (α, β)-accuracy

guaranteed for the count of any single bucket for α = (2/ε) ln(β−1), and for any counting

query over the histogram with α = (2/ε) ln(N/β). For unbounded neighbours D ≈± D′,

instead ∆x = 1, so the accuracy improves to give α = ε−1 ln(N/β).

The synthetic histogram produced by the Laplace perturbation algorithm can be used

to answer any other queries on the histogram. For example, Dwork and Roth [22] give

one implementation of a report noisy max algorithm that takes the largest value from the

synthetic histogram to give an approximate answer to the question of which histogram

bucket has the largest count.

Definition 2.1.8 (Report noisy max - Laplace, from Section 3.3 of Dwork and Roth [22]).

Given a database D ∈ X n, with corresponding histogram x ∈ NN , the report noisy max

(Laplace) algorithmMLapNM outputs:

MLapNM(D) = argmax
i

(
x[i] + Lap

(
∆x

ε

))
.

14

2.1 Differential privacy for static data

The value of ∆x depends on the privacy definition. For unbounded privacy ∆x = 1 and

for bounded ∆x = 2.

In practice, mechanisms using noise drawn from continuous distributions, such as the

Laplace mechanism, are susceptible to side-channel attacks. Mironov [57] shows how

the implementation of floating point numbers allows privacy breaches on the Laplace

mechanism and propose mechanism to correct these breaches while still drawing noise from

the Laplace distribution. Discrete alternatives to the Laplace mechanism, with similar

theoretical privacy and accuracy guarantees, such the discrete Laplace mechanism [39]

and discrete Gaussian mechanism [5], avoid these floating-point vulnerabilities but may

still be vulnerable to side-channel attacks. Jin et al. [46] show that implementations of

these discrete methods are vulnerable to timing attacks, and propose mitigations against

their attacks. Since the focus of this thesis is in providing theoretical privacy guarantees

rather than robust implementations, the algorithms presented use the continuous version

of the Laplace mechanism.

There are scenarios where the addition of random noise can drastically reduce utility. For

example, consider that potential buyers have indicated the maximum price they are willing

to pay for a product, and an optimal price must be chosen; positive noise added to the

optimal price may result in a price above every purchaser’s maximum. In these cases, the

Laplace mechanism in inappropriate, so alternative mechanisms must be used to preserve

differential privacy. The exponential mechanism McSherry and Talwar [55] does this by

selecting values probabilistically according to their relative utility. In this thesis we do not

consider these situations, so the details of the exponential mechanism are not presented

here.

2.1.5 Differentially private query sequences

Due to the degradation in privacy and/or utility required for differentially private com-

position, answering many queries in a differentially private manner can quickly become

impractical. For certain types of queries, however, a differentially private data structure

can be released that can then, thanks to the post-processing theorem (Theorem 2.1.2), be

used to answer any number of queries without any additional loss to privacy. When only

query answers meeting some threshold requirement are of interest, we can use the sparse

vector technique (SVT) to conserve the privacy budget for those above threshold queries.

15

2.1 Differential privacy for static data

The sparse vector technique (SVT) is an algorithm which allows a sequence of

interactive queries to be made on a database at a reduced cost to privacy and accuracy

over simple composition. SVT is a generalisation of the ‘indicator vector’ introduced

by Dwork et al. [25] to construct sanitised datasets, which was extended by Roth and

Roughgarden [62] in their ‘median mechanism’ and Hardt and Rothblum [42] in their

‘private multiplicative weights’ (PMW) mechanism. Early formalisations of SVT as a

standalone algorithm were given in lectures by Roth [61], and in the textbook by Dwork

and Roth [22].

There are two standard forms of SVT in the literature. Here we will call them SVT and

NumericSVT. The first provides (noisy) responses to whether or not each query answer lies

above some given threshold. NumericSVT, derived from PMW [42], utilises composition

theorems to give noisy numeric answers to the above threshold queries.

Algorithm 1, SVT, takes a database D, a constant c, and answers a stream of k queries

Q = {qi} with thresholds Θ = {θi}. qi is answered with ⊤ if a noisy answer to the query is

above a noisy threshold θ̂i and ⊥ if below, until either there have been c above threshold

answers, or all k queries are answered. The surprising and powerful result here is that it is

only the above threshold queries that degrade the privacy, so only their number must be

bounded by c, allowing an unbounded number of below threshold queries to be answered.

SVT has been shown to be ε-DP [22].

Algorithm 1 SVT (Algorithm 2 of Dwork and Roth [22])

Input: Database D, interactive query stream {qi}, i = 1, 2, ..., k, sensitivity ∆q, threshold
θ, cutoff c, privacy parameter ε

Output: Stream a ∈ {⊥,⊤}≤k

1: σ ← 2c∆q/ε ▷ Set noise scale function

2: θ̂ ← θ + Lap(σ)
3: w ← 0
4: for each round i do
5: if qi(D) + Lap(2σ) ≥ θ̂ then ▷ above threshold
6: output ai ← ⊤
7: w ← w + 1
8: θ̂ ← θ + Lap(σ) ▷ Resample threshold noise
9: else output ai ← ⊥ ▷ below threshold

10: if w ≥ c then Halt ▷ Exceeded hard query budget

Algorithm 2, NumericSVT, is very similar to SVT, except that rather than outputting

⊤ for above threshold queries, it outputs a noisy version of the numeric query answer.

16

2.1 Differential privacy for static data

This is achieved using composition: SVT is built by composing a simpler algorithm, called

‘AboveThreshold’ (Algorithm 1) in the Dwork and Roth book [22], that halts after a single

hard query, with itself. By giving an independently noisy numeric answer after a hard

query, NumericSVT is the composition of AboveThreshold and the Laplace mechanism.

Throughout, we will refer to the sections of NumericSVT that are equivalent to SVT as

the decision step, as they are what decides whether to output a numeric answer, and the

noisy numeric answer itself as the sample step.

Algorithm 2 NumericSVT (Algorithm 3 of Dwork and Roth [22])

Input: Database D, interactive query stream {qi}, i = 1, 2, ..., k sensitivity ∆q, threshold
θ, cutoff c, privacy parameter ε

Output: Stream a ∈ {⊥,R}≤k

1: σ1 ← 9c∆q/(4ε), σ2 ← 9c∆q/ε ▷ Set noise scale function

2: θ̂ ← θ + Lap(σ1)
3: w ← 0
4: for each round i do
5: if qi(D) + Lap(2σ1) ≥ θ̂ then ▷ above threshold
6: output ai ← qi(D) + Lap(σ2)
7: w ← w + 1
8: θ̂ ← θ + Lap(σ1) ▷ Resample threshold noise
9: else output ai ← ⊥ ▷ below threshold

10: if w ≥ c then Halt

A numeric accuracy guarantee for private query sequences requires a modified definition

of the accuracy bound on numeric streams.

Definition 2.1.9 (Numeric accuracy of streams, from Definition 3.10 of Dwork and Roth

[22]). An algorithm which outputs a stream of answers a1, ..., ak ∈ (R∪ {⊥})∗ in response

to a stream of k queries q1, ..., qk is (α, β)-accurate if, except with probability at most β,

the algorithm does not halt before qk, and for all ai ∈ R:

|qi(D)− ai| ≤ α ,

and, if the outputs are in respect to a stream of thresholds Θ = {θi}, for all ai = ⊥:

qi(D) ≤ θi + α .

17

2.1 Differential privacy for static data

Dwork and Roth [22] show that NumericSVT is ε-DP and (α, β)-accurate for

α = O

c log
(
ck
β

)
ε

 .

SVT, especially NumericSVT, has been incorrectly applied since some of its earliest uses.

Chen and Machanavajjhala [11] proved that a specific extension of SVT not requiring a

limit, c, on the number of hard queries does not satisfy differential privacy. Lyu et al. [53]

further showed that early versions of NumericSVT, including those used by Hardt and

Rothblum [42] and given in Roth’s lecture notes [61] do not satisfy differential privacy

because the noise used in the sample step is not independent of the noise used on the

query answer in the decision step.

Both the SVT and NumericSVT mechanisms given in Dwork and Roth’s book [22] are

differentially private, however Lyu et al. [53] show that the algorithm can be made more

accurate, without a loss to privacy, by not resampling the threshold noise after each query.

This version is given in Algorithm 3. Lyu et al. [53] also optimise the ratio of the decision

privacy budget allocated to the threshold and query (εd1 : εd2) for NumericSVT. This

requires an additional parameter, d, indicating what fraction of the privacy budget, ε,

should be dedicated to the decision step of the algorithm. While the versions of SVT

given by Lyu et al. [53] have better accuracy than those given by Dwork and Roth [22],

Algorithm 3 Optimised NumericSVT (Algorithm 7 of Lyu et al. [53])

Input: Database D, interactive query stream Q = {qi} and threshold stream Θ = {θi}
for i = 1, 2, ..., k, maximum query sensitivity ∆q, cutoff c, privacy parameter ε
and decision fraction 0 < d < 1.

Output: stream a ∈ {⊥,R}≤k

1: εd ← dε, εs ← (1− d)ε
2: if every qi is monotone then εd1 ← εd/(1 + c2/3)
3: else εd1 ← εd/(1 + (2c)2/3)
4: εd2 ← εd − εd1
5: ρ← Lap (∆q/εd1)
6: w ← 0
7: for each round i do
8: if qi(D) + Lap (2c∆q/εd2) ≥ θi + ρ then ▷ above threshold
9: output ai ← qi(D) + Lap (c∆q/εs)

10: w ← w + 1
11: else output ai ← ⊥ ▷ below threshold
12: if w ≥ c then Halt

18

2.1 Differential privacy for static data

their proofs do not account for adaptive query streams. As such, we use Algorithm 2 later

in this thesis for theoretical results, and Algorithm 3 for experimental comparisons.

The private multiplicative weights algorithm (PMW), introduced by Hardt and

Rothblum [42], with further details in Hardt’s thesis [41], is the first use of a numeric

SVT. It allows a combination of the powerful results of SVT with the machine learning

technique multiplicative weights (MW) to provide numeric, differentially private answers

for a stream of interactive linear queries, with fixed accuracy parameters α, β. Throughout

this chapter, mechanisms take an input database as a count histogram x.

Definition 2.1.10 (Linear query, as described in Chapter 4 of Dwork and Roth [22]).

Let D be a database drawn from a discrete universe X of size |X | = N , represented by a

histogram x ∈ NN . Let w ∈ RN be a vector of weights. A linear query, q, is a weighted

sum of histogram bucket counts:

q(x) = w · x =
N∑
i=1

w[i]x[i] .

If every w[i] ∈ {0, 1} this is called a counting query.

PMW relies on releasing a public histogram to approximate the true database, and allows

queries that do not differ significantly from the public histogram to be answered with

no loss of privacy, using post-processing [25]. Due to some privacy leakage issues in the

original algorithm, demonstrated by Lyu et al. [53], we present the version of the algorithm

from Dwork and Roth [22].

Algorithm 4 performs PMW by first setting the public histogram, y, to a uniform distri-

bution across X (line 3). It then makes repeated calls to NumericSVT (initialised line 4,

input functions {q′i} given in line 6, SVT outputs a′ used in lines 7, 11, 12, and 15) to

check whether the (noisy) difference between the true database and the public histogram

(line 6) lies above some threshold, θ, determined by the parameters (line 2). If it does,

it both releases a noisy answer (lines 12 and 15) and updates the public histogram to re-

weight the rows (lines 17-18) based on the result of the calls to NumericSVT. The update

shifts the public histogram, y, closer to the true histogram x. Below threshold queries

are answered based only on the public histogram (line 8). Since this algorithm accesses

the true database only through calls to the differentially private NumericSVT, it is also

19

2.1 Differential privacy for static data

differentially private, with the privacy parameters of the subroutine determined using the

composition theorem.

Algorithm 4 PMW (Algorithm 6 of Dwork and Roth [22], adapted from Figure 1
of Hardt and Rothblum [42])

Input: Histogram x, with N buckets, representing n individuals, interactive query stream
Q = {qi} where each qi ∈ Q, i = 1, 2, ..., cutoff c, privacy parameter ε, accuracy
parameters α, β, and weight parameter η ≤ 1

Output: Stream a = {ai} ∈ R, public histograms Y = {yi}
1: c← 4 logN/α2

2: θ ← (18c log (2|Q|) + log (4c/β))/ε
3: y0 ← [n/N]N ▷ synthetic database y
4: Initialise Subroutine NumericSVT(x, {q′i}, θ, c, ε) → a′ ▷ halt if subroutine halts
5: for each round i← 1, 2, ... do
6: q′2i−1 ← qi(x)− qi(yi−1), q

′
2i ← qi(yi−1)− qi(x)

7: if a′2i−1 = ⊥ and a′2i = ⊥ then ▷ below threshold
8: output ai ← qi(yi−1)
9: yi ← yi−1

10: else ▷ above threshold, hard query
11: if a′2i = ⊥ then
12: output ai ← qi(yi−1) + a′2i−1

13: ri ← 1− qi ▷ increases weight of query elements
14: else
15: output ai ← qi(yi−1)− a′2i
16: ri ← qi
17: for each i ∈ N do ŷi[i]← yi[i] · e−ηri[i] ▷ re-weight y
18: for each i ∈ N do yi[i]← ŷi[i]/

∑N
j=1 ŷi[j] ▷ normalise y

The accuracy of PMW relies on the relative entropy between the true and synthetic

databases x and y. The relative entropy of two databases is given using the Kullback-

Leibler (KL) divergence [51].

Definition 2.1.11 (Relative entropy, A.K.A KL-divergence, as given in Section 2.4 of

Cummings et al. [16]). The relative entropy of two databases, represented as histograms x

and y over some discrete, finite domain X of size |X | = N , is given by:

RE(x∥y) =
N∑
i=1

x[i] log
x[i]

y[i]
.

PMW halts if the number of hard queries to the NumericSVT subroutine exceeds a value

c, determined by the size of the data universe X and the accuracy parameter α. Dwork

20

2.2 Differential privacy for dynamic data

and Roth [22] show that PMW is (α, β)-accurate, for fractional histograms, when

α ≥ O

n2/3
 logN log

(
log (N1/3n2/3)

β

)
ε

1/3
 .

If this bound is met, the probability of halting before all queries are answered is ≤ β due

to the reduction in relative entropy expected from the multiplicative weights updates [42].

2.2 Differential privacy for dynamic data

So far this chapter has focused on differential privacy for some single, static, database. In

practice, most data has some dynamic property, where entries are being added, removed

or changed over time. In this section we describe various existing models for differential

privacy over such databases, where time is broken up into discrete intervals. Our taxonomy

of the various dynamic database models addressed in the differential privacy literature is

original, though we have stayed as consistent as possible with accepted terminology.

The first model is a simple dynamic database, a bitstream, whereby a single bit is added to

a database, represented as a bitstring, at each time t. This can be generalised to streams

of categorical data, where each entry is drawn from a finite universe X , rather than {0, 1},
we call this a growing database. We then move on to databases where the data cannot

be represented as a string, firstly the time-series model, frequently used for trajectory

data, each individual in the dataset takes some value from X at each time t. That is,

there is a set of growing strings, one for each individual. Finally, we describe databases

where only one individual is updated at each time, but where past entries can be deleted

or over-ridden. Table 2.1 compares these properties across the key papers mentioned in

this section, and in Section 3.1.3 we compare these models directly to our proposed FSDD

model.

Comparing these models requires some additional terminology. First, dynamic databases

may or may not have a time bound ; if the number of updates is limited by some number T ,

we will call it T -bounded, otherwise we call it time-unbounded. Second, there is additional

diversity in what it means for database streams to be neighbouring. Relevant neighbour

definitions will be described in each of the following sections.

21

2.2 Differential privacy for dynamic data

Paper
Update
types

Time
bound

Users
per t

Privacy
level

+ − ⟲ T ∞ 1 + E U w
B
S Dwork et al., 2010 [26] ✓ ✓ ✓ ✓ ✓

Chan et al., 2011 [9] ✓ ✓ ✓ ✓ ✓

G
ro
w
in
g

Dwork et al., 2010 [27] ✓ ✓ ✓ ✓
Jain et al., 2012 [45] ✓ ✓ ✓ ✓
Cummings et al., 2018 [15] ✓ ✓ ✓ ✓
Perrier et al., 2019 [58] ✓ ✓ ✓ ✓
Yıldırım et al., 2020 [69] ✓ ✓ ✓ ✓
Wang et al., 2021 [66] ✓ ✓ ✓ ✓
Cardoso and Rogers, 2022 [8] ✓ ✓ ✓ ✓

T
im

e-
se
ri
es

Kellaris et al., 2014 [49] ✓ ✓ ✓ ✓
Fan et al., 2014 [34] ✓ ✓ ✓ ✓ ✓
Cao and Yoshikawa, 2015 [6] ✓ ✓ ✓ ✓
Li et al., 2015 [52] ✓ ✓ ✓ ✓ ✓ ✓
Cao et al., 2017 [7] ✓ ✓ ✓ ✓
Chen et al., 2017 [12] ✓ ✓ ✓ ✓

F
D Mir et al., 2011 [56] ✓ ✓ ✓ ✓

Qiu and Yi, 2022 [59] ✓ ✓ ✓ ✓ ✓ ✓
The models listed are categerised as bitstream (BS), growing database, time-series, and fully
dynamic (FD), corresponding with subsections of this section. Update types indicate whether
an update can add (+), delete (−), or modify the value of (⟲) an element. The number of
updates is either bounded by T or unbounded. The privacy guaranteed is at event (E) or
user (U) level, or, for some unbounded update cases, sliding window (w).

Table 2.1: Properties of dynamic databases used in various key papers mentioned in
Section 2.2.

2.2.1 Differential privacy for growing databases

The bitstream model. Dwork et al. [26, 27] and Chan et al. [9] independently intro-

duced similar early models for differential privacy in a dynamic context. In Dwork et al.

[26] and Chan et al. [9], the dynamic data is a bitstream, modelled as a sequence of pre-

fixes S = S1, S2, ..., ST for times t = 1, 2, ..., T , where each St = 0, 1t. Bitstreams S, S′ are

neighbours if, for some time k, Si = S′
i for i < k and Si ≈ S′

i for i ≥ k. In other words,

the two bitstreams differ at exactly one position, k. Differential privacy over bitstreams

is defined by applying Definition 2.1.1 to this new definition of neighbouring bitstreams.

Figure 2.1 shows an example of two neighbouring bitstreams.

Definition 2.2.1 (Neighbouring database streams). Database streams S and S′ are event-

level neighbours if they may differ by the update at single time t [9, 26]; they are user-

level neighbours if they may differ at multiple updates, if those updates all pertain to

the same individual [26]. Where time is unbounded, unconstrained user-level privacy can

22

2.2 Differential privacy for dynamic data

be particularly difficult to achieve [19]. Here, a sliding-window neighbour model may be

employed, whereby either event- or user-level privacy is guaranteed only for subsequences

of length w of the update stream [49].

S1 1

S2 1 0

... 1 0 ...

St−1 1 0 ... 1

St 1 0 ... 1 0

St+1 1 0 ... 1 0 0

... 1 0 ... 1 0 0 ...

S′
1 1

S′
2 1 0

... 1 0 ...

S′
t−1 1 0 ... 1

S′
t 1 0 ... 1 1

S′
t+1 1 0 ... 1 1 0

... 1 0 ... 1 1 0 ...

Figure 2.1: Example of a bitstream D and an event-level neighbouring bitstream D′.
Yellow cells indicate the effect of updates on the bitstrings and blue cells indicate where

neighbours differ.

Both Dwork et al. [26] and Chan et al. [9] provide differentially private counting algorithms

under this model. Dwork et al. [26] also provide a general transformation from the static to

the growing database model for differentially private, monotonically increasing functions,

while Chan et al. [9] extend their counting algorithm to the time-unbounded setting. In

Theorem 2.2.1 gives a general lower bound for the error differentially private counting in

the growing database model, as shown by Dwork et al. [26].

Theorem 2.2.1 (Theorem 4.2 of Dwork et al. [26]). Any differentially private event-level

algorithm for counting on a growing database over T rounds must have error Ω(log T).

The algorithms and some lower bounds provided by Dwork et al. [26, 27] abide by pan-

privacy, a stronger privacy guarantee whereby not only are outputs differentially private,

but the central database itself is protected against a small fixed number of intrusions by

an adversary. This limits the power of the algorithms as the database itself cannot be

maintained in its true state.

Since the growing database can be modelled as a special case of all other dynamic database

models, and event-level privacy is weaker than alternative privacy definitions, this bound

applies to counting mechanisms across all dynamic database models presented. Later work

by Dwork et al. [29] provides new mechanisms, including an optimal counting mechanism,

without the pan-privacy restriction.

The strictly growing database model. The bitstream model described in Section 2.2.1

is generalised by extending the data universe, from bits, to some discrete universe X of

23

2.2 Differential privacy for dynamic data

size |X | = N . We refer to this as the strictly growing database model, and give an example

in Figure 2.2.

D1 7

D2 7 3

... 7 3 ...

Dt−1 7 3 ... 1

Dt 7 3 ... 1 4

Dt+1 7 3 ... 1 4 3

... 7 3 ... 1 4 3 ...

D′
1 7

D′
2 7 3

... 7 3 ...

D′
t−1 7 3 ... 1

D′
t 7 3 ... 1 7

D′
t+1 7 3 ... 1 7 3

... 7 3 ... 1 7 3 ...

Figure 2.2: Example of a growing database D and an event-level neighbouring database
D′ that differ at time t. Yellow cells indicate the effect of updates on the databases and

blue cells indicate where neighbours differ.

Cummings et al. [15] use a strictly growing model, with time-unbounded updates, and pro-

vide general transformations for differentially private algorithms from the static database

setting. They define a stream of databases as a sequence S = {D1, D2, ...}, where at initial
time t = n, Dn ∈ X n, and at each subsequent time step t > n the database grows by one

element. As such, in their setting, Dt ∈ X t at every time step, and Dt[i] = Dt−1[i] for all

i ∈ [1..t− 1]. Similar models are used by Yıldırım et al. [69] and Cardoso and Rogers [8].

Under the strictly growing database model, it is assumed that each entry is independent

and that entries remain static once they are added. For example, the prefixes in the

bitstreams of Chan et al. [9], Dwork et al. [26] do not allow previously streamed bits to be

flipped, and the growing databases of Cummings et al. [15] do not allow a record added at

time (and index) t to be modified after time t. These models allow composition theorems,

such as that in Theorem 2.1.1, to be applied to prove privacy guarantees. For example by

setting εi values for each query such that their sum over all queries does not exceed some

global ε. In order to describe the accuracy of algorithms in the growing database model,

a new definition of numeric accuracy is required, given in Definition 2.2.2.

Definition 2.2.2 (Numeric accuracy for growing databases, from Definition 2 of Cum-

mings et al. [15]). For αn, αn+1, ... > 0, a randomised algorithmM is ({αt}t≥n, β)-accurate

for query stream Q = {qt,:}t≥n if for any input data stream X = {xt}t≥n the algorithm

outputs y such that |qt,j(xt)− qt,j(yt)| ≤ αt for all qt,j ∈ Q with probability at least 1− β.

Cummings et al. [15] use an event-level privacy definition: they define database streams

S, S′ as neighbouring if, for some t, Dτ = D′
τ for τ = 1, ..., t − 1 and Dτ ≈⟲ D′

τ for

τ = t, t+1, Specifically, S ≈ S′ if there is some j = t such that, for all τ , Dτ [i] = D′
τ [i]

24

2.2 Differential privacy for dynamic data

for all i ̸= j. The authors provide a PMW algorithm for growing databases, as well as two

general transformations from the static database setting to the strictly growing database

setting. One of the general transformations has an accuracy guarantee that is fixed over

time, and the other that improves over time. Their PMW algorithm for growing databases,

PMWG, utilises the fact that the sensitivity of linear queries, relative to the size of the

database, decreases as data accumulates. This allows them to guarantee privacy by scaling

their privacy parameter with time, and to achieve (α, β)-accuracy, when

α ≥ O
((

logNn log n/β

nε

)1/3
)
,

which is less accurate than the static version by around a factor of O(log n).

2.2.2 Differential privacy for time-series data

The growing database models presented in previous sections allow a single record to be

added at each time step. This section describes models where every individual can send an

update at every time step. These models have primarily evolved around spatio-temporal

data, though they can apply to any time-series data.

Definition 2.2.3 (Discrete Time Series Database). A time series database can be rep-

resented as a table with n rows, representing users, and columns t = 1, 2, ... representing

discrete timestamps. At each time stamp t, users may send an update to the database with

some discrete value x ∈ X representing their state, or change in state, during the period

(t−1, t]. If no update is sent by user i at time t, it is presumed that user i has maintained

their previous state during the corresponding time period.

Definition 2.2.3 broadly captures the database definitions variously described as ‘time-

series’, ‘longitudinal’, and ‘(spatio-)temporal’ in differential privacy literature. The privacy

definitions vary, corresponding to event-, user-, and sliding-window-level privacy and both

bounded and unbounded neighbour definitions. Figure 2.3 shows an example of a T -

bounded time-series database under this definition.

Rastogi and Nath [60] first introduced differential privacy for time-series data. Kellaris

et al. [49] first formalised a model similar to the one presented here, along with a new

privacy definition for infinite streams, w-event level privacy, whereby event-level privacy

25

2.2 Differential privacy for dynamic data

is preserved for streams of any length, and user-level privacy is preserved within those

streams for sequences of database updates up to length w. This definition degrades to

event-level privacy for small w, and describes user-level privacy for finite streams of length

T when w = T . The authors propose two algorithms to answer queries with unbounded w-

event privacy for time-series databases. Cao and Yoshikawa [6] expand on w-event privacy,

proposing privacy over ℓ-trajectories, defined as ℓ consecutive updates by a single user,

which can occur over more than ℓ total database updates. Li et al. [52] propose algorithms

releasing histograms with w-event differential privacy under the time-series model using

SVT to determine publication frequency. Chen et al. [12] provide the first differentially

private mechanism to allow a variety of queries to be answered over a time-series stream.

Cao et al. [7] extend event-, user-, and w-event-level privacy to the scenario where an

adversary has knowledge of temporal correlations within the data, which is overlooked in

prior works.

Fan et al. [34] provide algorithms for aggregate statistics on web browsing behaviour.

Rather than providing user- or event-level privacy, they protect browsing sessions, with

each session consisting of a sequence of page views at consecutive, discrete time stamps.

They extend their previous work on time-series [31–33] to provide two ε-differentially

private algorithms for releasing aggregate counts for web page visits at each time stamp.

2.2.3 Differential privacy for fully dynamic data

This section describes database models that allow only a single update at each time,

but updates may be an addition or deletion of an entry, or modification to an existing

entry. There is limited existing literature into such fully dynamic models. Mir et al. [56]

first proposed such a model, expanding on the growing database models of Dwork et al.

D1 1

1 2

2 1

3 2

...

n 8

D2 1 2

1 2 3

2 1 4

3 2 2

...

n 8 6

DT 1 2 ... T− 1 T

1 2 3 ... 2 4

2 1 4 ... 7 9

3 2 2 ... 5 7

...

n 8 6 ... 6 3

Figure 2.3: Example of a T -bounded time-series database D, with n users, at times
t = 1, 2, ..., T . Each table Dt represents the state of the database at time t, with colums
representing timestamps and rows representing users. We can see that once a column is

inserted, it remains static.

26

2.2 Differential privacy for dynamic data

[26, 27]. Recently, Qiu and Yi [59] have introduced a more general fully dynamic database

model, again drawing inspiration from the seminal works of Dwork et al. [26, 27] and Chan

et al. [9]. We hereby refer to the former as the state update model and the latter as the

add/delete model.

The State Update Dynamic Database Model. Definition 2.2.4 describes the database

model presented by Mir et al. [56].

Definition 2.2.4 (State update dynamic database model, from Section 2.1 of Mir et al.

[56]). Consider a finite set of users, U , of size n, a finite set of integer valued states

X = 0, 1, ..., N , a time bound T , and a stream S of updates. Each user i ∈ U is in state

ui,0 = 0 at time t = 0, and at each time t > 0 exactly one user, jt, updates their state. State

updates are represented as a tuple indicating the user and the value of the change in state.

That is, the update at time t is given by st = (jt, dt) where d ∈ {−(ujt,t−1),−(ujt,t−1 −
1), ...,+(N − (ujt,t−1 + 1)),+(N − (ujt,t−1))} so that ujt,t = ujt,t−1 + dt ∈ X , and for all

i ̸= jt, ui,t = ujt,t−1. Thus the state of any user i at time t can be determined from S by

taking ui,t =
∑t

τ=1{dτ : sτ = (i, dτ)}.

The authors further distinguish between a partly dynamic database, where all updates are

positive integers, and a fully dynamic database, where updates can be positive or negative.

The definition of privacy under this model is similar to definitions of bounded, user-level

privacy, with some important distinctions.

S

(1, +7)

(4, +3)

(4, +2)

(2, +3)

(3, +4)

(2, +5)

(1, -2)

(3, -4)

(4, -1)

(4, +2)

D0 0 0 0 0

D1 7 0 0 0

D2 7 0 0 3

D3 7 0 0 5

D4 7 3 0 5

D5 7 3 4 5

D6 7 8 4 5

D7 5 8 4 5

D8 5 8 0 5

D9 5 8 0 4

D10 5 8 0 6

S′

(4, +3)

(4, +2)

(2, +3)

(3, +4)

(3, +5)

(2, +5)

(3, -4)

(4, -1)

(4, +2)

D′
0 0 0 0 0

D′
1 0 0 0 3

D′
2 0 0 0 5

D′
3 0 3 0 5

D′
4 0 3 4 5

D′
5 0 3 9 5

D′
6 0 8 9 5

D′
7 0 8 5 5

D′
8 0 8 5 4

D′
9 0 8 5 6

Figure 2.4: Example of neighbouring state update streams S and S′, and corresponding
database streams D and D′ with n = 4 users, where the neighbouring subsets of update
times areK = {1, 7} andK ′ = {5}, and neighbouring users are (j, k) = (1, 3). Yellow cells
indicate the effect of updates on the databases and blue cells indicate where neighbours

differ.

27

2.2 Differential privacy for dynamic data

Definition 2.2.5 (Neighbouring state update dynamic databases, from Definition 4 of

Mir et al. [56]). S and S′ are said to be (user-level) neighbors if there exists a (multi)set

of updates in S indexed by K ⊆ [t] that update the same ID j ∈ U , and there exists a

(multi)set of updates in S′ indexed by K ′ ∈ [t′] that updates some k ̸= j ∈ U such that∑
τ∈K dτ =

∑
τ∈K′ d′τ and for all other updates in S and S′ indexed by Q = [t] −K and

Q′ = [t′]−K ′ respectively,

∀i ∈ U
∑
τ∈Q
{dτ : sτ = (i, dτ)} =

∑
τ∈Q′

{d′τ : s′τ = (i, d′τ)} .

Definition 2.2.5 differs from previous definitions in that the order, number, and value of

updates to all users may differ between neighbours, provided that each user is in the

same state at time T . This is a particularly complicated privacy model that, unlike other

models, has very little restriction on the number, order, and individual values of updates,

but is very restrictive in terms of how neighbouring streams can differ in total value. While

k and j represent different individuals, they must maintain the property that they are in

the same state at time T . Figure 2.4 gives shows a simple example of neighbouring state

update streams. In this example the order and value of updates not in the subsets K and

K ′ have been maintained, though this is not required by the definition.

Beyond defining this new model, Mir et al. present three ε-pan-private sketches, as well

as lower bounds for pan-privacy against a single intrusion. The algorithms presented

are: distinct count, for partly dynamic data, estimating the number of distinct users with

non-zero state; cropped first moment, for fully dynamic data, estimating the sum of all

elements after cropping each value to some τ ; and, heavy hitters count, for fully dynamic

data, estimating the number of distinct users with a state worth at least 1/k of the total

state, for some k. Approximation factors and lower bounds, under pan-privacy, are given

for all three problems.

The Add/Delete Dynamic Database Model. Recent work by Qiu and Yi [59] ex-

tends the growing database model to allow deletions and empty updates under an event-

level, unbounded privacy model. This model allows only one update per time period,

however rather than changing the value of an entry, updates can either add or delete en-

tries. Unlike the growing database models described in Section 2.2.1, updates can also be

empty.

28

2.2 Differential privacy for dynamic data

Definition 2.2.6 (Add/Delete Fully Dynamic Database Model, from Section 1.3 of Qiu

and Yi [59]). Let X be a finite state universe and t = 1, 2, ... be a (possibly infinite) time

horizon. An add/delete dynamic database is modeled by a stream of updates S with each

update st = (jt, dt)∨⊥ for jt ∈ X and dt ∈ {1,−1}. The number of elements in state i at

time t is given by
∑t

τ=1{dτ : sτ = (i, dτ)}.

Figure 2.5 shows examples of neighbouring streams under this model. Notice that identities

of users are not required, as this model provides only event-level privacy.

S

(3, +)

(1, +)

(2, +)

(1, -)

⊥
(2, +)

(4, +)

(3, +)

(3, +)

(4, -)

x0 0 0 0 0

x1 0 0 1 0

x2 1 0 1 0

x3 1 1 1 0

x4 0 1 1 0

x5 0 1 1 0

x6 0 2 1 0

x7 0 2 1 1

x8 0 2 2 1

x9 0 2 3 1

x10 0 2 3 0

S′

(3, +)

(1, +)

⊥
(1, -)

⊥
(2, +)

(4, +)

(3, +)

(3, +)

(4, -)

x′
0 0 0 0 0

x′
1 0 0 1 0

x′
2 1 0 1 0

x′
3 1 0 1 0

x′
4 0 0 1 0

x′
5 0 0 1 0

x′
6 0 1 1 0

x′
7 0 1 1 1

x′
8 0 1 2 1

x′
9 0 1 3 1

x′
10 0 1 3 0

Figure 2.5: Example of a fully dynamic add/delete update stream S and neighbouring
stream S′, and corresponding histogram streams X and X ′ where histograms are of size
N = 4, and where xt is the state of the histogram at time t. Yellow cells indicate the

effect of updates on the histograms and blue cells indicate where neighbours differ.

The authors provide a black box algorithm to convert any (ε, δ)-differentially private

mechanism for static data, with (α, β)-accuracy for α = fα((ε, δ), β), to a differentially

private add/delete fully dynamic algorithm with accuracy

α = O

(
log t

ε
+ fα

(
(ε, δ)

log5mt

, nt +
log1.5mt log(1/β)

ε

))
,

where nt is the size of the dataset at time t, and mt = Nt + log log t where Nt is the

number of updates at time t.

While this is a flexible model that generalises many existing dynamic models, the defini-

tions and mechanisms provided by Qiu and Yi [59] are limited to event-level, rather than

the stronger user-level, privacy.

29

2.2 Differential privacy for dynamic data

2.2.4 Alternative models

While our focus here is on a single stream of data from a discrete, finite universe of states,

differential privacy for dynamic data of other forms has been explored. For example,

Jain et al. [45] formalise the notion of differentially private online convex programming,

where data are drawn interactively from a convex set. They give differentially private

algorithms for gradient descent in these settings. Smith and Thakurta [64] continue the

study of differentially private online learning, improving on the bounds given by Jain et al.

[45] and expanding to the bandit setting. Perrier et al. [58] study differentially private

release of statistics on real-valued data streams. They propose a mechanism for choosing

a cropping threshold, when no bound on data values in known, with theoretical accuracy

guarantees. Wang et al. [66] improve on the guarantees of Perrier et al. [58].

This thesis considers only the global model of differential privacy, whereby the database

itself is considered a trusted aggregator. There is also considerable work on dynamic data

in the local setting. The local model of differential privacy considers the case where the

data aggregator is untrusted, so privacy preserving mechanisms must be applied by the

user prior to sending data to a centralised database. This model was first formalised by

Kasiviswanathan et al. [48], though guaranteed long before differential privacy itself had

been formalised, in the randomised response mechanism of Warner [67]. Rastogi and Nath

[60] and Chan et al. [10] provide differentially private mechanisms for dynamic distributed

data, with no trusted aggregator. Erlingsson et al. [30] give a mechanism to improve the

privacy of aggregated, locally private, data through anonymisation, where users update

their data up to k times over the T time periods. Wang et al. [66] provide a local version

of their global DP mechanism for real valued streams. Ye et al. [68] introduce a notion of

local differential privacy for time-series data and provide three mechanisms.

30

Chapter 3

The Fixed Size Dynamic Database

Model (FSDD)

Here we introduce a new dynamic database model for differential privacy. Our model,

the fixed size dynamic database (FSDD), allows records to be modified over time, unlike

the strictly growing model described in Chapter 2. It has different constraints to other

dynamic database models previously described. The constraints of FSDD allow us to make

assumptions about the cumulative sensitivity of database updates over time, which we use

to our advantage in designing mechanisms and assessing their accuracy. In Section 3.1

we describe the FSDD model in detail, including privacy definitions and comparisons to

other models.

In Section 3.2 we give several algorithms for answering the same query, with differential

privacy, after each update to the database. First we give a naive algorithm as a baseline,

then introduce a new algorithm, the τ -frequency repeated queries (τ -RQ) algorithm for

queries with real valued answers. We then modify this to give a black box version that

converts any static DP algorithm to an FSDD DP algorithm. Finally, we modify the sparse

vector technique (SVT), using it as a subroutine to give a more sophisticated baseline than

the naive algorithm.

31

3.1 Database and privacy model

3.1 Database and privacy model

3.1.1 Database model

Our new database model, the fixed size dynamic database (FSDD) has some fixed set of

users of size n, who each start in some state in finite universe X at time t = 0. At each

time t = 1, ..., T − 1 a single user updates their state, to any state in X , not excluding the

state they were previously in. Below, we give an example of a scenario that may use such

a database model, as well as a formal definition.

Example 3.1.1 (FSDD). A cohort of graduates commence a graduate employment pro-

gram. Graduates have individual review meetings where their progress is assessed by the

cohort manager. After each meeting, the graduate is assigned a status from:

X = {P: Probation,R: At Risk,S: Satisfactory,E: Exceeding Expectations} .

All graduates are in default state P at time t = 0. The manager wants to share how the

cohort is tracking without revealing the individual status of any graduate.

Definition 3.1.1 (T -bounded fixed-size dynamic database (FSDD-T)). Consider a stream

of databases S = D0, D1, ..., DT−1, each with n elements drawn from a discrete, finite

universe X of size N . At time t = 0, initial database D0 ∈ X n. At each subsequent time

t = 1, 2, ..., T − 1, for some jt ∈ [n], Dt[jt] may differ from Dt[jt − 1] and Dt[i] = Dt−1[i]

for all i ̸= jt. That is, at each of T − 1 times, with T known in advance, exactly one

element is updated.

Equivalently, we can represent an FSDD stream S as an initial database D0 and a stream

of updates U = U1, ..., UT−1, where each Ut = (jt, Dt[jt]) for index jt ∈ [n] and value

Dt[jt] ∈ X .

A diagram of the model described in Example 3.1.1 is shown in Figure 3.1. While this

example has all individuals in the same status, P, at time 0, this is not required by

Definition 3.1.1.

32

3.1 Database and privacy model

U

(1, R)

(4, S)

(3, R)

(1, S)

(2, S)

(4, R)

(2, E)

(3, S)

(4, S)

(1, R)

D0 P P P P

D1 R P P P

D2 R P P S

D3 R P R S

D4 S P R S

D5 S S R S

D6 S S R R

D7 S E R R

D8 S E S R

D9 S E S S

D10 R E S S

U′

(1, R)

(4, S)

(3, E)

(1, S)

(2, S)

(4, R)

(2, E)

(3, E)

(4, S)

(1, R)

D′
0 P P P P

D′
1 R P P P

D′
2 R P P S

D′
3 R P E S

D′
4 S P E S

D′
5 S S E S

D′
6 S S E R

D′
7 S E E R

D′
8 S E E R

D′
9 S E E S

D′
10 R E E S

Figure 3.1: Example of neighbouring FSDD update streams U and U ′ and database
streams S and S′, with rows representing times and columns representing individuals in
the database. Databases have size n = 4, universe size N = 10, the number of updates
are bounded by T = 11 and the databases differ at user j = 3. Yellow cells indicate the

effect of updates on the histograms and blue cells indicate where neighbours differ.

3.1.2 Privacy model

Given that our database model has a fixed size, and we expect users to provide multiple

updates, we define privacy using a bounded, user-level privacy model. That is, we define

neighbouring database streams S ≈ S′ as those that differ by the values of any updates by a

single user, and where databases Dt ≈⟲ D
′
t are bounded neighbours, under Definition 2.1.3

for static databases, at every time t. A formal definition is given below, and an example

is given in Figure 3.1 above.

Definition 3.1.2 (FSDD Neighbours). FSDD database streams S, S′ are considered neigh-

bouring, S ≈ S′, if both have database size n and for some j ∈ [n], Dt[i] = D′
t[i] for all

i ̸= j at all times t = 0, 1, ..., T − 1. That is, at all times t ∈ [T − 1], D′
t can differ from

Dt only at position j.

Equivalently, for neighbouring initial databases Dt ≈⟲ D
′
t, update streams U and U ′ ensure

that streams S and S are neighbouring if, for some j ∈ [n], U ′
t = Ut for all Ut ∈ {(js, ·) :

js ̸= j} and U ′
t = (j, ·) for all Ut ∈ {(j, ·)}. That is, the index of every update is the same

between neighbouring streams, and the value of each update is the same except for some

index j.

When we refer to the ε-differential privacy of algorithms on FSDD streams, we do so

relative to this definition of FSDD neighbours.

33

3.1 Database and privacy model

Definition 3.1.3 (ε-differential privacy of algorithms over FSDD streams). A randomised

algorithmM, answering a sequence of queries Q over an FSDD stream S, is ε-differentially

private if, for any two FSDD-neighbouring (Definition 3.1.2) streams S ≈ S′ and any sub-

set of possible output streams Y ,

Pr[M(S) ∈ Y] ≤ eε · Pr[M(S) ∈ Y],

where ε > 0.

In designing mechanisms for differential privacy under the FSDD model we can exploit two

key characteristics. The first, which is shared with most privacy models in the dynamic

DP literature (with the notable exception of the state update model of Mir et al. [56]), is

that at each time t, databases Dt and D
′
t are neighbouring. In Figure 3.1, we see that, in

any row, at most one column differs between the neighbouring database representations.

This is built in to our Definition 3.1.2 of neighbouring FSDDs, and allows us to apply

basic composition over time, since the k-fold adaptive composition result (see discussion of

Theorem 2.1.3) guarantees that differential privacy is maintained under composition even

of different databases and different mechanisms, provided each mechanism is differentially

private. It is important to note that this requires that the differing updates still occur at

the same times between neighbouring updates, which limits the type of privacy that can

be expected when it comes to membership inference. This is a limitation shared by many

dynamic differential privacy models, and, more generally, with bounded DP in that the

size of the database may be exposed.

The second characteristic, of the FSDD model itself rather than the privacy model, is that

only a single element is updated at each time. As such, consecutive databases Dt and

Dt+1 are also neighbouring, that is, Dt ⟲ Dt+1 such that |q(Dt)− q(Dt+1)| ≤ ∆q. While

this does not affect our use of basic privacy results, it allows us to bound the overall effect

of updates over time to optimise accuracy.

In Section 3.2 we give a mechanism that relies only on the first characteristic, and then

one that employs both, for privately answering a repeated query over time. In Chapter 4

we give mechanisms for privately answering multiple different queries after each update.

34

3.1 Database and privacy model

3.1.3 Comparison to existing dynamic database models

In this section, we compare the FSDD database and privacy models to those discussed

in Section 2.2. We show that the database model is most similar to the state update

model of Mir et al. [56], while our privacy model is much simpler. Our database model is

less restrictive than growing database models (e.g. [9, 15, 26]) and more restrictive than

time-series models (e.g. [6, 7, 49, 52])and the add/delete database model [59]. Table 3.1

gives an overview of key differences between these models and FSDD.

The strictly growing model. The growing database models described in Section 2.2.1

have a single entry added at each time, such that the database size is growing at a fixed

rate, with no deletions or modifications to past entries. The bitstream model [9, 26, 27],

where X = {0, 1}, starts with an empty database at time 0, such that the size of the

database at time t, nt = t. This property is shared with some more general growing

models, though in Cummings et al. [15], where the data universe is some discrete finite

set, the database has some size n0 at time 0, such that the database size at time t is

nt = n0 + t. FSDD on the other hand has a fixed size n, but has one record updated at

each time.

In their papers on pan-privacy for streaming and continual release, Dwork et al. [26, 27]

give both event- and user-level privacy preserving algorithms; their requirement of pan-

privacy is stronger than the user-level differential privacy we require of FSDD. In the

bitstream algorithms of Chan et al. [9] and the growing database algorithms of Cummings

Users
per t

Update
types

Privacy model

Strictly growing
[9, 15, 26]

1 + User-level pan-privacy, event-level DP.

State update
[56]

1 ⟲

DP. Neighbours differ by user for some
subset of updates, and by order of value of
all updates, provided sums maintained. See
Definition 2.2.5.

FSDD 1 ⟲ User-level DP, initial value and all updates.

Time-series
[6, 7, 49, 52]

≤ n ⟲
Various definitions, event-, user- and
w-event- level DP.

Add/delete [59] 1 +/−/⊥ Event-level DP.

Table 3.1: Properties of dynamic databases used in various key papers mentioned in
Section 2.2, where n is the number of users, and the update types are add (+), delete

(−), change (⟲), and empty (⊥).

35

3.1 Database and privacy model

et al. [15] only event-level privacy is guaranteed. If we were to provide an event-level

privacy guarantee for FSDD, neighbouring streams would differ only at a single update,

rather than all updates for a single user, and would require that D0 = D′
0 for the initial

databases.

The discrete time series model. FSDD may be considered a special case of the

discrete time series model described in Section 2.2.2, where updates are restricted to only

one user at each time. The T -bounded time-series database is often modelled, for example

by Cao et al. [7], as a matrix whereby the users are represented by rows and the time

periods by columns, such that the trajectory of a user over time is represented as a row

vector. Kellaris et al. [49] model their infinite time-series as a stream of databases, where

each database in the stream is a snapshot of the state of each user at the given time.

Our model of the FSDD is like the latter, whereby we do not assume memory of previous

states, or of the times of each update. This choice does not affect the privacy model,

however, since our FSDD neighbour definition could apply to either.

There is a large corpus of literature considering differential privacy for time-series, and

thus a variety of privacy definitions employed. For example, the four key papers we listed

in Table 2.1, cover event-level [7], user-level [52], and w-event sliding window [6, 49] privacy

definitions. Since w-event sliding window privacy is equivalent to user-level privacy in the

T bounded setting if w = T , most of these are similar to our user-level privacy guarantee,

whereby neighbouring streams differ on the values of a single user.

The add/delete model. The add/delete model of Qiu and Yi [59] is also more general

than FSDD, allowing additions and deletions to the database, as well as empty updates.

If we map our data universe X , where |X | = N to the set of integers [0..N−1] and restrict

ourselves to the case where D0[i] = 0 for all users indexed i ∈ [n], we can model FSDD

using the operations of the add/delete model. If we represent each time period of FSDD

as two time periods of the add/delete model, then for each FSDD update Ut = (jt, Dt[jt])

we have a pair of add/delete updates s2t−1,= (Dt[jt],−1) and s2t−1,= (Dt[jt],−1) such

that we remove one instance of jt’s former state and add one of its current state, so the

overall set of states moves from the FSDD histogram xt−1 to xt.

36

3.2 Repeated queries under the FSDD Model

FSDD has user-level privacy built in to the model, which is stronger than the event-level

privacy guaranteed by the add/delete model [59]. Since the add/delete database model

maintains only the counts of each item (histograms) rather than the user associated with

each entry, an event-level privacy guarantee is reasonable, though it would be possible

to define user-level privacy for the add/delete model, as it is with the strictly growing

database model.

The state update model. Finally, FSDD is very similar to the state update database

model of Mir et al. [56], provided we represent the FSDD data universe as integers. The

only substantial is that the state update model has that all users are in state 0 at time 0,

whereas FSDD allows users to start in any state in X . If we start with a database of 0s, we

can model FSDD as the state update model by representing each update in the stream by

the tuple U ′
t = (jt, Dt−1[jt]−Dt[jt]) showing the index of the user updates and the update

as a difference between the previous state and the new state, rather than Ut = (jt, Dt[jt]).

The key difference between FSDD and the state update model is the privacy model, par-

ticularly the definition of neighbouring streams: neighbouring databases in the state

update model may have the order and value of updates for all users differ between neigh-

bours, provided their sum is equal; and rather than changing the values of a single user

between neighbouring databases, it allows some subset of updates to be transferred from

one user to another, though again requires the sum of these updates to be maintained.

Additionally, Mir et al. [56] give pan-private algorithms, a stricter privacy guarantee than

differential privacy alone. While pan-privacy is possible for FSDD streams, this requires

the database itself to be stored privately, restricting the types of queries that can be made.

3.2 Repeated queries under the FSDD Model

In this section we present mechanisms for the scenario where we wish to answer the

same query after each update to the database. This is a common problem in the dynamic

database literature, for example, releasing counts [9, 26], histograms [6, 7, 49, 52], or heavy

hitters [10, 56]. These mechanisms are often referred to as continual release or continual

observation mechanisms; here, we use the term repeated queries for clarity of comparison

with the interactive queries described in Chapter 4. Rather than present mechanisms for

37

3.2 Repeated queries under the FSDD Model

specific queries, we give mechanisms that take a query as input and release an answer to

that query after each update. Section 3.2.2 describes a generalised version, where we use

a static differentially private mechanism as a black box, trusting its privacy guarantees,

to convert any static DP mechanism to one for FSDD.

First, in Algorithm 5, we consider a naive mechanism, NRQ, for answering repeated, nu-

meric, queries with DP under the FSDD model. A simple application of basic composition,

Algorithm 5 outputs a DP answer to the query q on the database at each time step, capped

at T time-steps, using the Laplace mechanism. Its privacy follows from the privacy of the

Laplace Mechanism, and we give accuracy guarantees based on the accuracy of the Laplace

mechanism and the union bound.

Theorem 3.2.1. NRQ (Algorithm 5) is ε-differentially private.

Proof. By the privacy of the Laplace Mechanism, the answer for each round is
(
ε
T

)
-

DP. Composing T
(
ε
T

)
-DP queries gives overall privacy ε, by basic composition (The-

orem 2.1.3).

Theorem 3.2.2. NRQ (Algorithm 5) is (α, β)-accurate for

α = ln

(
T

β

)
· (T)∆q

ε
.

Proof. By the accuracy of the Laplace mechanism (Theorem 2.1.4), we have that each

query has accuracy |at − q(Dt)| ≤ α = ln(Tβ) ·
T∆q

ε , with probability no less than 1 − β
T .

By the union bound, this gives (α, β)-accuracy overall.

3.2.1 τ-frequency repeated queries on FSDD-T (τ-RQ)

NRQ (Algorithm 5) provides the same guarantees of privacy and accuracy for any arbitrary

sequence of databases Di ∈ X n. Under the FSDD-T model, databases Dt and Dt+1 differ

Algorithm 5 NRQ: Naive repeated queries on FSDD-T

Input: Query function q : X n → R with sensitivity ∆q. Database stream {Dt}, where
each Dt ∈ X n is a vector of n states, each from discrete, finite universe X , for
times t = 0, 1, 2, ..., T − 1. Privacy paramater ε.

Output: Differentially private output {at} ∈ RT

1: for each time step t = 0, 1, 2, ..., T − 1 do

2: output at ← q(Dt) + Lap
(
T∆q

ε

)
38

3.2 Repeated queries under the FSDD Model

only in the value of one element, providing us with a limit on the effect of a single update of

|q(Dt)−q(Dt+1)| ≤ ∆q, where ∆q is the ℓ1-sensitivity of the query function q, as defined in

Definition 2.1.4. Using this information, we can design algorithms with improved accuracy

over composition of arbitrary database sequences.

Algorithm 6, τ -RQ provides such an improvement by querying the database only after

every 1 ≤ τ ≤ T updates, and otherwise returning the previous output. When t mod τ = 0

we say it is a sample round, where we use the Laplace Mechanism,MLap to answer query

q : X n → R on database Dt with ε-differential privacy. When t mod τ > 0 we say it

is a non-sample round, where we output the answer from the most recent sample round,

rather than taking a new sample. Equivalently, we could give no output for non-sample

rounds; we provide an output at every time t for ease of comparison with SVT and PMW

based algorithms presented later in the thesis. We call τ the frequency parameter, as it

determines the distance between successive samples of the database. The total number of

sample rounds is given by the cutoff, c =
⌈
T
τ

⌉
. If τ = 1, τ -RQ is equivalent to NRQ.

Consider a small-scale example, where τ = 4 and T = 10 we would take three samples, at

times t = 0, 4, and 8. Since we know that |q(Dt)−q(Dt+1)| ≤ ∆q, we can bound the effect

of updates between samples. For example, at time t = 6 there have been two updates since

the last sample, at time t = 4, so we know that |q(D6)−q(D4)| ≤ 2∆q, so that the additive

error of output a6, |a6− q(D6)| must be no more than |a4− q(D4)|+2∆q. When choosing

τ , we must balance between the error introduced by the Laplace Mechanism, which, for

fixed total ε, increases as the number of samples c increases, and the error introduced by

the effect of the updates between samples.

Algorithm 6 τ -RQ: τ -frequency repeated queries on FSDD-T

Input: Query function q : X n → R with sensitivity ∆q. FSDD stream {Dt}, where each
Dt ∈ X n is a vector of n states, each from discrete, finite universe X , for times
t = 0, 1, 2, ..., T − 1, such that |q(Dt) − q(Dt+1)| ≤ ∆q. Privacy paramater ε.
Frequency parameter τ .

Output: Differentially private output {at} ∈ RT

1: c←
⌈
T
τ

⌉
2: for each time step t = 0, 1, 2, ..., T − 1 do

3: if t mod τ = 0 then output at ← q(Dt) + Lap
(
c∆q

ε

)
4: else output at−1

Like the privacy and accuracy of NRQ, τ -RQ is ε-differentially private by the privacy of

the Laplace Mechanism and basic composition.

39

3.2 Repeated queries under the FSDD Model

Theorem 3.2.3 (Privacy of τ -RQ). τ -RQ (Algorithm 6) is ε-differentially private.

Proof. This follows directly from the proof of Theorem 3.2.1, where the answer for each

sample round is, instead,
(

ε
⌈T/τ⌉

)
-DP. Non-sample rounds do not affect the privacy, by

Theorem 2.1.2.

The accuracy guarantee is given in two parts, first, for the sample rounds, by a union

bound over the accuracy of the Laplace Mechanism, and then, for the non-sample rounds,

by a bound on the cumulative effect of updates between samples.

Theorem 3.2.4 (Accuracy of τ -RQ). τ -RQ (Algorithm 6) is (α, β)-accurate for

α = ln

(
c

β

)
· c∆q

ε
+ (τ − 1)∆q , (3.1)

where c =
⌈
T
τ

⌉
. That is, all outputs {at}T−1

t=0 are within ±α of the true answer to query q,

on database D at time t, with probability 1− β.

Proof. Following the proof of Theorem 3.2.2, we have that the answer for each sample

round is
(
α′, βc

)
-accurate, where:

α′ = ln

(
c

β

)
· c∆q

ε
.

Since |q(Dt)− q(Dt+1)| ≤ ∆q, we know that |q(Dt)− q(Dt+τ−1)| ≤ (τ − 1)∆q. Hence the

accuracy for any non-sample round is at most α′ + (τ − 1)∆q.

Combining the accuracy for the sample and non-sample rounds we find that the agorithm

has worst case accuracy α = ln
(

c
β

)
· c∆q

ε + (τ − 1)∆q. Since non-sample rounds are

deterministic, we can take the union bound for β across only the sample rounds, to give

|at − q(Dt)| ≤ α with probability no less than 1− β overall.

Choosing τ . We now consider how we can optimise our choice of τ to improve the

accuracy of τ -RQ. Preliminary numerical analysis of theoretical bounds gives us some

idea of the expected utility of our algorithms for various parameter choices. In Figure 3.2

we see how parameters ε and τ affect the theoretical accuracy bound α, for (α, β)-accuracy,

as shown in Theorem 3.2.4. We plot α for all integer values of τ in [1..T], and indicate

40

3.2 Repeated queries under the FSDD Model

the optimal choice of τ for minimising α. We see that looser privacy (larger choice of ε)

improves utility (lower α), and that this compounds as the number of samples increases

(smaller τ).

Figure 3.3 breaks down one of these curves into increasing and decreasing components,

that is, the accuracy of the sample and non-sample rounds. The accuracy of the sample

rounds improves as τ increases, since fewer queries are being made overall, decreasing the

error bound of the first term, f1 = α′. However, as τ increases, there are more database

updates between queries, so there is an increasing upper bound on the difference between

the true database at a non-sample round and the database at the time of the last sample

round, given by f2 = (τ −1)∆q. Here we plot f1 and f2 for all integer values of τ in [2..T].

These plots were obtained using the matplotlib (version 3.7.1) and numpy (version 1.42.2)

libraries in Python 3.11, by vectorising α, f1 and f2, obtained using math library functions,

across all integer choices of τ .

In Theorem 3.2.5, we give a heuristic for choosing τ by minimising the worst-case theo-

retical accuracy bound α.

21 23 25 27 29

τ (log2 scale)

20

22

24

26

28

α
(l
o
g
2
sc
al
e)

(167,2.9)

(125,2.1)

(91,1.5)

(67,1.1)

(τ, α) =

ε = 0.25

ε = 0.5

ε = 1.0

ε = 2.0

Figure 3.2: Theoretical value of α for (α, β)-privacy guarantee of τ -RQ, with parameter
choices β = 0.01, T = 1000,∆q = 0.009 and various choices of ε, showing minimum α

values for each choice of ε. (τ, α) are marked for the minimum α for each ε.

41

3.2 Repeated queries under the FSDD Model

22 24 26 28 210

τ (log2 scale)

2−6

2−4

2−2

20

22

24

26
f
(l
o
g
2
sc
al
e)

f1 = ln(c/β) · c∆q/ε

f2 = (τ − 1)∆q

min. α

Figure 3.3: Theoretical value of α, split into decreasing and increasing components
f1 = ln(c/β) · c∆q/ε and f2 = (τ − 1)∆q, where c =

⌈
T
τ

⌉
, for (α, β)-privacy guarantee

of τ -RQ, with parameter choices ε = 1.0, β = 0.01, T = 1000,∆q = 0.009, showing the
minimum α value for reference.

Theorem 3.2.5. The theoretical accuracy bound, α, for τ -RQ (Algorithm 6) is minimised

by taking τ = τ ′, given by

τ ′ = argmin
τ

(
c

ε
ln
c

β
+ τ

)
, (3.2)

where c =
⌈
T
τ

⌉
.

Proof. The minimum α across all possible choices of τ , when time is T -bounded, is given

by:

τ ′ = argmin
τ∈[1,T]

α , (3.3)

where

α = ln

(
c

β

)
· c∆q

ε
+ (τ − 1)∆q = ∆q

(
c

ε
ln

(
c

β

)
+ τ − 1

)
.

Since the sensitivity, ∆q, can be factored out, this is equivalent to

τ ′ = argmin
τ∈[1,T]

(
c

ε
ln
c

β
+ τ

)
.

42

3.2 Repeated queries under the FSDD Model

Due to the cutoff c = ⌈T/τ⌉ including a ceiling function, we have steps in the values of

α where there is a sudden drop for the first τ resulting in some c, and then a gradual

increase as the (τ − 1)∆q term increases while the other term remains fixed. We can thus

assume that the best choice of τ will be at one of these local minima. We call this set the

minimum distinct τs, with shorthand MDT. Thus, a heuristic for optimising τ , is to find

τ ′, using brute force to calculate

τ ′ = argmin
τ∈MDT

(
c

ε
ln
c

β
+ τ

)
.

Since this must only be calculated once for any choice of (τ, ϵ, β), using brute force to

calculate it across all τ ∈ MTD does not come at a significant cost to overall efficiency.

Below, we give a closed form for minimising α when generalised to continuous τ .

A lower bound on accuracy. Here we show a continuous lower bound on α, under

the (α, β)-accuracy definition, for τ -RQ. This bound is difficult to calculate, so is not

preferable to using brute force to find the discrete minimum using Equation (3.3), but

may be of independent interest.

Theorem 3.2.6. The accuracy α of the τ -RQ mechanism (Algorithm 6), given by Theo-

rem 3.2.4 can be bounded below by the continuous function αc where:

αc = ln

(
T

τβ

)
· ∆qT

τε
+ (τ − 1)∆q ,

which is minimised when

τ =

√
T

2ε
·W

(
2e2εT

β2

)
.

Proof. From Theorem 3.2.4 we have that α = ln
(
⌈T/τ⌉

β

)
· ∆q⌈T/τ⌉

ε + (τ − 1)∆q. This is

bounded below at each τ by the continuous version, αc = ln
(

T
τβ

)
· ∆qT

τε + (τ − 1)∆q. We

can then find the minima of this continuous version for a lower bound that applies to both

the continuous and discrete functions, by finding some τ̃ ∈ R that minimises αc.

Taking the first derivative, we have:

dαc

dτ
=

∆qT

τ2ε

(
ln

(
τβ

T

)
− 1

)
+∆q ,

43

3.2 Repeated queries under the FSDD Model

which has one positive root:

dαc

dτ
= 0 =⇒ τ =

√
T

2ε
·W

(
2e2εT

β2

)
,

where W (x), the Lambert W function, is the function satisfying W (x)eW (x) = z [14].

Taking the second derivative:

d2αc

dτ2
=

∆qT

τ3ε

(
3− 2 ln

(
τβ

T

))
,

and substituting τ ′ =

√
T
2ε ·W

(
2e2εT
β2

)
we get:

d2αc

d(τ ′)2
=

2∆q

√
2ε

√
T
(
W
(
2e2εT
β2

)) 3
2

(
3− 2 ln

(
β√
2Tε

√
W

(
2e2εT

β2

)))
. (3.4)

We complete the proof using the following facts:

1. ∆q, ε, T, β > 0, by definition,

2. ln(W (x)) = ln(x)−W (x), by Equation 3.8 of Corless et al. [14],

3. x > 0 =⇒ W (x) > 0, by definition.

By facts (1) and (2), the expression inside the brackets in Equation (3.4) simplifies to

1 +W
(
2e2εT
β2

)
, so, by (3), the whole expression is positive and thus τ ′ is a minimum.

Figure 3.4 Compares the minimum (for τ ∈ N) for the discrete vs continuous accuracy

bounds.

3.2.2 τ-frequency repeated black box (τ-RBB)

Several key papers in dynamic differential privacy (e.g. [15, 26]) provide mechanisms

that, rather than providing differential privacy themselves, allocate portions of the pri-

vacy budget to some mechanism that provides static differential privacy, keeping track to

preserve overall privacy using composition properties. We call these black box mechanisms,

as they do not depend on the internal workings of the static mechanism called, trusting

the privacy and accuracy claims of the, possibly black box, static mechanism. Here we

44

3.2 Repeated queries under the FSDD Model

40 60 80 100 120 140 160 180 200

τ

1.4

1.6

1.8

2.0

2.2

2.4

2.6
α

(91,1.503)

(90,1.502)(τ̃ , αc) =

(τ, α) =

discrete

continuous

Figure 3.4: Comparison of discrete accuracy bound α and continuous αc, with parameter
choices β = 0.01, T = 1000,∆q = 0.009, ε = 1.0, showing minimum α and αc evaluated

for τ ∈ {30, 31, .., 199, 200}.

provide a mechanism for repeatedly calling a black box mechanism in the FSDD setting.

Algorithm 7 gives a modified τ -RQ algorithm using this principle. The privacy of this

algorithm follows from the privacy of the black box, combined with basic composition,

and the accuracy can be determined from the accuracy of the black box using the union

bound.

Algorithm 7 τ -RBB: τ -frequency repeated black box on FSDD-T

Input: Database stream {Dt}, where each Dt ∈ X n for t = 0, 1, 2, ..., T − 1. Privacy
paramater ε. Static, ε-differentially private mechanismM(D, ε). Frequency pa-
rameter τ .

Output: Differentially private output {at} ∈ RT

1: c← ⌈Tτ ⌉
2: for each time step t = 0, 1, 2, ..., T − 1 do
3: if t mod τ = 0 then output at ←M(Dt,

ε
c)

4: else output a⌊ t
τ
⌋

Theorem 3.2.7 (Privacy of τ -RBB). τ -RBB (Algorithm 7) is ε-differentially private.

Proof. This follows directly from the proof of Theorem 3.2.1, where the answer for each

sample round is, instead,
(

ε
⌈T/τ⌉

)
-DP. Non-sample rounds do not affect the privacy, by

Theorem 2.1.2.

45

3.2 Repeated queries under the FSDD Model

Theorem 3.2.8 (Accuracy of τ -RBB). When instantiated with (α, β)-accurate mechanism

M, τ -RBB (Algorithm 7) is (α, β′)-accurate, where

β′ =

⌈
T

τ

⌉
β .

That is, all outputs {at}Tt=0 are within ±α of the true function f on database D at time t

with probability 1− β′.

Proof. This follows from the union bound.

3.2.3 Adaptive repeated queries on FSDD-T (ARQ)

Here we modify NumericSVT (Algorithm 3) for the FSDD-T setting, and utilise it to

answer repeated queries. Similar to the DSFT algorithm for histograms, by Li et al.

[52], ARQ (Algorithm 9) uses NumericSVT as a subroutine, and publishes a new sample

value, at, only when the difference between a noisy version of true query answer q(Dt) and

previously published answer, at−1, exceeds a noisy version of some given threshold.

First, in Algorithm 8, we give our modified NumericSVT, NSVT-FSDD. To apply the

NumericSVT algorithm to the FSDD setting (Algorithm 8), we need only to add an outer

for loop, for the units of time.

Algorithm 8 NSVT-FSDD: NumericSVT for FSDD (Based on Algorithm 3 of
Dwork and Roth [22])

Input: Database stream S = {Dt} and query stream Q = {qt,i} for t = 0, ..., T − 1 and
i = 1, ..., ℓt for each t. Threshold θ, maximum query sensitivity ∆q, cutoff c, and
privacy parameter ε.

Output: Output stream a ∈ {⊥,R}L, where L =
∑T−1

t=0 ℓt

1: ρ← Lap
(
9c∆q

4ε

)
2: w ← 0
3: for each time t do
4: for each query i do

5: νt,i ← Lap
(
9c∆q

2ε

)
6: if qt,i(Dt) + νt,i ≥ θ + ρ then ▷ above threshold

7: output at,i ← qt,i(Dt) + Lap
(
9c∆q

ε

)
8: w ← w + 1
9: ρ← Lap

(
9c∆q

4ε

)
10: else output at,i ← ⊥ ▷ below threshold
11: if w ≥ c then Halt ▷ Exceeded hard query budget

46

3.2 Repeated queries under the FSDD Model

Now we show that the privacy of NSVT-FSDD follows from the privacy of NumericSVT.

As we show below, the proof can be deduced from the proof of privacy of NumericSVT

given by Dwork and Roth [22]. Hence, we only provide the sketch.

Lemma 3.2.9. NSVT-FSDD is ε-differentially private.

Proof sketch. The proof of the ε-differentially private of NumericSVT, given in Theorem

3.2.7 of Dwork and Roth [22], depends only on the sensitivity ∆q. This sensitivity applies

for any neighbouring databases. Since all pairs of databases, Dt and D
′
t, for each time t, in

neighbouring FSDD streams S ≈ S′ are themselves neighbouring, substituting D → Dt,

D′ → D′
t, fk → qt,i, and νk → νt,i into the proof of privacy for NumericSVT [22] results

in a proof of privacy for NSVT-FSDD.

Algorithm 9 ARQ: Adaptive frequency repeated queries on FSDD-T

Input: database stream {Dt}, where each Dt ∈ X n for t = 0, 1, 2, ..., T − 1 and |X | = N ,
privacy paramater ε, query function q : X n → R where |q(Dt) − q(Dt+1)| ≤ ∆q,
threshold θ, and hard query cutoff c.

Output: string a ∈ RT

1: a−1 ← q([1N]N)
2: Initialise Subroutine NSVT-FSDD({Dt>0}, {q′i}, θ,∆q, c, ε) → a′

3: for each round t do
4: q′2t ← at−1 − q(Dt), q

′
2t+1 ← q(Dt)− at−1

5: if a′2t = ⊥ and a′2t+1 = ⊥ then ▷ below threshold
6: at ← at−1

7: else ▷ above threshold, hard query
8: if a′2t+1 = ⊥ then at ← at−1 + a′2t
9: else at ← at−1 − a′2t+1

We begin ARQ (Algorithm 9) by taking, as an initial comparison value, at−1, the query q

applied to a uniform histogram. For each database Dt, we use NumericSVT to determine

whether the difference between Dt and at−1, the previous published answer, is beyond the

noisy version of some threshold θ. We continue this process until we have exceeded our

hard query cutoff c, or all updates have been completed. The privacy of ARQ follows from

the privacy of NSVT.

Theorem 3.2.10. ARQ (Algorithm 9) is ε-differentially private.

Proof. The true database stream is only accessed via the NSVT-FSDD subroutine, which

is ε-differentially private by Lemma 3.2.9, the proof of which depends on the privacy of

NumericSVT as given by Dwork and Roth [22].

47

3.2 Repeated queries under the FSDD Model

The privacy of NumericSVT given by Dwork and Roth [22] builds on the proof of a simpler

algorithm, AboveThreshold, which halts after a single above threshold query is encoun-

tered. Composition of AboveThreshold with the Laplace Mechanism gives NumericSVT,

such that the privacy of NumericSVT is preserved even when queries are adaptively chosen

in response to above threshold queries.

Since the adaptive queries, q′, generated by ARQ depend only on a fixed initial value,

a−1 and on answers to above threshold queries provided by NSVT-FSDD, ARQ is ε-

differentially private.

The optimal choice of threshold, θ, and cutoff, c, depend on several factors, including the

query function, q, and the distribution of updates. Li et al. [52] provide a mechanism for

adaptively choosing the threshold as the data is updated, that may be of some interest to

improve the performance of this mechanism.

48

Chapter 4

Interactive Query Sequences

In the previous chapter, we considered mechanisms designed to answer a single, fixed query

after each update to a fixed size dynamic database (FSDD). Now we consider mechanisms

that allow us to answer a sequence of queries, when the queries themselves, and the

number of queries between updates, are not known in advance. For example, an analyst

might query a database as requests come in, without advance knowledge of which subset

of possible queries will be requested within any given period. We call these interactive

query sequences, and call the subsequence of queries made between subsequent updates

a query round. First, in Section 4.1, we consider how the τ -RBB mechanism introduced

in Section 3.2.2 can be applied to interactive linear query sequences by releasing noisy

histograms, and taking answers over those histograms instead of the private database.

In Section 4.2, we consider how the private multiplicative weights (PMW) mechanism

(Algorithm 4) can be modified for the FSDD setting. Similar to the work of Cummings

et al. [15], we repeat the static PMWmechanism for each update, with the public histogram

carrying over from the previous time period. In Section 4.2.2 we show that adding random

noise to the public histogram, when the true database is updated, decreases the expected

number of above threshold queries encountered by the SVT subroutine. This improves the

accuracy of the expected numeric answers by increasing the portion of the privacy budget

allocated to each above threshold query. Unlike the PMWG mechanism of Cummings

et al. [15], under the FSDD model we cannot rely on the growth of the database to absorb

the cost of repeated querying through decreasing query sensitivity, since the size of the

49

4.1 τ -RQ for interactive query sequences

FSDD is fixed. As such, in an infinite update setting, we must trade off between privacy

and accuracy over time.

4.1 τ-RQ for interactive query sequences

In Chapter 3 we introduced the τ -RQ mechanism for answering repeated queries in the

repeated query setting. Algorithm 6 provides a mechanism for answering repeated nu-

merical queries, which is extended in τ -RBB (Algorithm 7), to allow any differentially

private mechanism, for answering a single query, from the static setting to be extended

to the FSDD setting. Linear queries (see Definition 2.1.10) can be answered by applying

a query function to histogram representation of a database. As such, we can answer all

linear queries over a static database by releasing a histogram only once. If this released

histogram is differentially private, the post-processing theorem (Theorem 2.1.2) ensures

that any queries made over it cannot introduce any additional privacy leakage. In the

static setting, we can use the Laplace perturbation algorithm for histograms,MLPH (Def-

inition 2.1.7), to release a differentially private, noisy histogram over a private database.

We extend this to the FSDD setting by using the MLPH as our black box mechanism

in τ -RBB. Algorithm 10 formalises how interactive linear queries are answered using this

method.

Algorithm 10 τ -RH: τ -RQ for interactive query sequences

Input: Database stream {Dt}, where each Dt ∈ X n for t = 0, 1, ..., T −1. Adaptive query
stream {qt,i} where each qt,i : X n → R, t = 0, 1, 2, .., T − 1, i = 1, 2, Frequency
parameter τ ∈ [1..T], privacy parameter ε ∈ (0, 1).

Output: Query answers {at,i} each at,i ∈ R. Public histograms {yt}, where each yt ∈ R|X |

1: Initialise τ -RBB ({Dt}, ε,MLPH, τ)
2: for each time step t = 0, 1, 2, .., T − 1 do
3: yt ← output of τ -RBB at time t
4: for each query qt,i for i = 1, 2, ..., lt do
5: output at,i ← qt,i(yt)

The privacy and accuracy of Algorithm 10 are derived from those of its components:

τ -RBB andMLPH.

Theorem 4.1.1 (Privacy of τ -RH). τ -RH (Algorithm 10) is ε-differentially private.

Proof. The original database stream is only accessed by the τ -RBB mechanism, which is

ε-differentially private by Theorem 3.2.7 when instantiated with an ε-differentially private

50

4.1 τ -RQ for interactive query sequences

mechanism. The input mechanism, MLPH, is ε-differentially private by the privacy of

the Laplace mechanism. All queries performed on the public histogram do not affect

the privacy of the mechanism, by post-processing (Theorem 2.1.2). Thus, τ -RH is ε-

differentially private.

How we measure the accuracy of τ -RH depends on the set of possible queries. We should

choose some distance measure over the histogram that corresponds to the class of possible

queries, that is, the accuracy is bounded by the worst-case accuracy of the worst-case

query in the query set Q. For example, if we allow only single bucket counting queries,

the accuracy would depend on the maximum error of any bucket in the histogram, while

if we allow all counting queries it would be maximum sum of errors, and, if we allow linear

queries with negative weights (w ∈ [−1, 1]), the maximum sum of absolute errors. In

addition to these subsets of linear queries, we may also include other types of queries that

can be answered on histograms, such as top-k or median.

We now give a more detailed example, for linear counting queries. We can determine the

(α, β)-accuracy and thus find an optimal choice of τ as follows.

Theorem 4.1.2 (Accuracy of τ -RH for linear counting queries). τ -RH (Algorithm 10),

when limited some set of linear counting queries Q ⊆ {0, 1}N , is (α, β)-accurate for

α =
2c

ε
ln

(
c · wmax

β

)
+ (τ − 1) , (4.1)

where c =
⌈
T
τ

⌉
, wmax = maxq∈Q

∑N
i=1wq[i], where wq[i] is the weight ∈ {0, 1} of histogram

bucket i for query q. That is, all outputs {at}Tt=0 are within ±α of the true answer to query

q on database Dt, at time t, with probability 1− β.

Proof. From the accuracy of the Laplace Mechanism (Theorem 2.1.4) and the definition of

the Laplace perturbation algorithm for histograms,MLPH (Definition 2.1.7), we have that

a single bucket count over a Laplace perturbed histogram in the bounded, static setting is

(α, β)-accurate with α = (2/ε) ln (1/β), where 2/ε is the scale of the Laplace noise. This

generalises to α = (2/ε) ln (k/β) when taking the sum over k buckets of the histogram.

From the definition of τ -RBB (Algorithm 7) we have that the scale of the Laplace noise

at each sample step is ε/c and from Theorem 3.2.8 β scales linearly with c when taken

over all samples. So, for each sample step of τ -RBB in τ -RH we have that each query is

51

4.2 PMW-FSDD-T

(α, β)-accurate for α = (2c/ε) ln (k/β) where k ≤ wmax is the number of buckets included

in that query. Over the c sample steps, queries made at sample step times are therefore

(α, β)-accurate with α = (2c/ε) ln (cwmax/β).

Finally, between sample steps, the effect of the updates will reduce the accuracy depending

on the sensitivity of the queries themselves, since each update results in a true database

that is a bounded neighbour of that at the previous time step. For counting queries the

sensitivity is 1 in the bounded neighbour model, since, when we move one element from

one bucket to another, the sum of the buckets will increase by 1 for an element moved

from a bucket not in the query to one in the query, decrease by one for the reverse, and

otherwise will not change. As such, the maximum error introduced by the up to τ − 1

updates between samples is (τ−1)∆q = (τ−1), so we have that the overall (α, β)-accuracy

for τ -RH has α = (2c/ε) ln (cwmax/β) + (τ − 1).

As in Theorem 3.2.5, we can optimise τ by choosing τ ′ = argminτ α. We can further

improve the accuracy of our mechanism by optimising the query set. In the worst case, a

linear counting query includes all buckets in the histogram, giving wmax = N , however, if

we assume that the size of the database n is non-private, which is the usual assumption for

bounded DP, then we can easily discard this query to give wmax = N − 1. Furthermore,

we have that counting queries are symmetric. For example, we have that for queries

q = [1, 1, 0, 1] and q′ = [0, 0, 1, 0], and any histogram x ∈ {0, 1}4, q(x) = n − q′(x).

As such, we can remove the larger of any two symmetric queries, answering them using

post-processing on an answer to the other, such that wmax = ⌊N/2⌋.

Thus, for the set of all optimised counting queries over a histogram of size N , we can

achieve (α, β)-accuracy with α = (2c/ε) ln (c⌊N/2⌋/β) + (τ − 1).

4.2 PMW-FSDD-T

Inspired by the PMWG algorithm of Cummings et al. [15], in Algorithm 12 we give a

PMW algorithm for answering linear queries under the FSDD-T model, PMW-FSDD-T .

Figure 4.1 shows the operations of the algorithm at a high level. In this algorithm, we

instantiate a new NumericSVT instance for each update to the true database. Like the

52

4.2 PMW-FSDD-T

original PMW algorithm of Hardt and Rothblum [42], a public histogram, y, initially uni-

formly distributed, is used to answer queries. When each query arrives, the NumericSVT

subroutine is used to determine whether the true answer differs significantly from the an-

swer on y, and returns a numeric answer if it does. We call these hard queries. To ensure

that there is no privacy leakage (see Section 3.2 of Lyu et al. [53]), each query requires two

calls to SVT, one to determine if the true answer is significantly smaller than the public

answer, and another to determine if it is significantly larger. If a query is determined as

hard, the public histogram y is updated using the multiplicative weights (MW) update

rule. Figure 4.1 gives a high level overview of PMW-FSDD-T , while Algorithms 11 and 12

show the low level details.

Figure 4.1: Flow chart showing the high level operations of PMW-FSDD-T.

Like Cummings et al. [15], we modify NumericSVT so that the hard query cutoff is man-

aged by the PMW algorithm, rather than the SVT subroutine. We must assume that the

relative entropy between the public and true histograms may increase when the database is

Algorithm 11 MSVT: Modified SVT subroutine (Based on Algorithm 6 (NSG)
of Cummings et al. [16] and Algorithm 3 (NumericSparse) of Dwork and Roth
[22])

Input: database D, represented as histogram x, adaptive query stream {q̂i}, i = 1, 2, ...,
threshold θ, privacy parameter ε̂, cumulative cutoff ĉ.

Output: string a ∈ {⊥,R}k
1: procedure SVTSubroutine(x, {q̂i}, θ, ε̂, ĉ)
2: θ̂ ← θ + Lap

(
9ĉ
4ε̂

)
3: for each round i do
4: if ⟨q̂i, x⟩+ Lap (9ĉ/(2ε̂)) ≥ θ̂ then ▷ above threshold
5: output ai ← q̂i(x) + Lap(9ĉ/ε̂)
6: θ̂ ← θ + Lap (9ĉ/(4ε̂)) ▷ Resample threshold noise
7: else output ai ← ⊥ ▷ below threshold

53

4.2 PMW-FSDD-T

Algorithm 12 PMW-FSDD-T

Input: Fractional histogram stream {xt}, where |xt| = n and xt ∈ X with |X | = N .
Adaptive query stream {qt,i} where each qt,i ∈ Q, t = 0, 1, 2, .., T − 1, i = 1, 2,
Threshold θ, privacy parameter ε, accuracy parameter α, tradeoff parameter k,
and weight parameter η ∈ (0, α3). ‘Outer’ update function g : RN → RN and
corresponding hard query cutoff function ψ(·).

Output: string {at,i} ∈ R, public histograms {yt,i}
1: θ ← 2α/3
2: y0,0 ← [1/N]N ▷ synthetic database y
3: ξ ← ε/(2T)
4: for each time step t = 0, 1, 2, .., T − 1 do
5: ht ← 0 ▷ count of hard queries
6: ct ← ψ(t)−∑t−1

τ=0 hτ ▷ max hard queries in time period

7: Initialise SVTSubroutine
(
xt, {q′t,i′}, θ, ξ, ct

)
→ {ât,i′}

8: for each query i = 1, 2, ..., lt do
9: q′t,2i−1 ← qt,i(xt)− qt,i(yt,ht), q

′
t,2i ← qt,i(yt,ht)− qt,i(xt)

10: if ât,2i−1 = ⊥ and ât,2i = ⊥ then ▷ below threshold
11: output at,i ← qt,i(yt,ht)
12: else ▷ above threshold, hard query: perform MW update
13: if ât,2i = ⊥ then
14: output at,i ← qt,i(yt,ht) + ât,2i−1

15: r ← 1− qt,i ▷ increases weight of the query elements
16: else
17: output at,i ← qt,i(yt,ht)− ât,2i
18: r ← qt,i
19: for each j ∈ N do ŷ[j]← yt,ht [j] · e−ηr[j] ▷ re-weight y
20: ht ← ht + 1 ▷ Increment hard query counter
21: for each j ∈ N do yt,ht ← ŷ[j]/

∑N
k=1 ŷ[k] ▷ normalise y

22: if
∑t

τ=0 hτ ≥ ψ(t) then
23: Halt ▷ Hard query budget exceeded
24: yt+1,0 ← g(yt,ht) ▷ according to update rule
25: Terminate SVTSubroutine

updated, and calculate this potential increase in order to determine a bound on the num-

ber of above-threshold queries expected during each round, and choose privacy parameters

accordingly. In PMWG, Cummings et al. [15] additionally update the public histogram y

after each update to the true database, to account for the increase in entropy caused by

the update. In Section 4.2.1 we consider the case where no such update is applied, and

find a hard query bound that is exponential in t. In Section 4.2.2, inspired by PMWG

[15], we apply uniform noise to the public histogram, and determine a hard query bound

that is linear in t.

54

4.2 PMW-FSDD-T

4.2.1 Case 1: no outer update rule

At line 24 of Algorithm 12 the public histogram is updated regardless of the results of the

inner (query) loop. Here we attempt to find an appropriate hard query cutoff function

ψ(·) if there is no such update. That is, if g is the identity function g(y) = y. In this

case, the only updates to the public histogram are those performed in response to hard

queries, using the MW update rule. In order to determine the entropy parameter, we first

determine the maximum increase in entropy (KL-divergence, see Definition 2.1.11) caused

by a single update to the true database. We then use this to determine the expected

number of hard queries up to any time t.

We now consider how FSDD updates affect the relative entropy of the public and true

histograms in this case.

Lemma 4.2.1. The entropy increase caused by a single update to an FSDD database is

bounded by:

RE (x̂∥y)− RE (x∥y) ≤ 2
n (log n+ ηc) (4.2)

where c is the number of previous MW updates to the public histogram.

Proof. This proof follows the format and some techniques of the proof of Lemma 15 of

Cummings et al. [16].

Let ∆N represent the set of fractional histograms equivalent to databases in X , and let

x, x̂, y ∈ ∆N , where x̂ is a bounded neighbour of x. That is, we have some j, k ∈ N

such that x̂[j] = x[j] + 1
n , x̂[k] = x[k] − 1

n , and for all i ̸= j, k, x̂i = xi. In order to

calculate a bound on the increase in entropy when an entry is modified, we must bound

RE (x̂∥y)− RE (x∥y).

RE (x̂∥y)− RE (x∥y) =
N∑
i=1

(
x̂[i] log

x̂[i]

y[i]
− x[i] log x[i]

y[i]

)

=

((
x[j] + 1

n

)
log

x[j] + 1
n

y[j]
− x[j] log x[j]

y[j]

)

+

((
x[k]− 1

n

)
log

x[k]− 1
n

y[k]
− x[k] log x[k]

y[k]

)
=
(
x[j] + 1

n

)
log
(
x[j] + 1

n

)
− x[j] log x[j]− 1

n log y[j]

+
(
x[k]− 1

n

)
log
(
x[k]− 1

n

)
− x[k] log x[k] + 1

n log y[k] .

(4.3)

55

4.2 PMW-FSDD-T

For x[i] ∈ [0, 1] and n ≥ 1, we have that
(
x[i]± 1

n

)
log
(
x[i]± 1

n

)
− x[i] log x[i] ≤ 1

n log n,

so

RE (x̂∥y)− RE (x∥y) ≤ 1

n

(
2 log n+ log

y[k]

y[j]

)
. (4.4)

Assuming the public histogram is only updated for above-threshold queries, we can bound

y[k]/y[j] using the fact that y is updated at most c times. We have that at time t = 0,

all y0[i] = 1/n, and, using the multiplicative weights update rule as in the original PMW

algorithm [42] (see Lines 19-21 of Algorithm 12), at each subsequent update, q > 0,

yq[i] =
yq−1[i]e

−ηrq [i]∑N
j=1 yq−1[j]e−ηrq [j]

. (4.5)

We first bound the numerator. Since η > 0 and rq[i] ∈ [0, 1], we have

yq−1[i]e
−η ≤ yq−1[i]e

−ηrq [i] ≤ yq−1[i] . (4.6)

Next, we bound the denominator. Using the upper bound in Equation (4.6) and the fact

that yq−1 ∈ ∆N ,

e−η = e−η
N∑
j=1

yq−1[j] ≤
N∑
j=1

yq−1[j]e
−ηrq [j] ≤

N∑
j=1

yq−1[j] = 1 . (4.7)

So now we must have that, after each update,

yq−1[i]e
−η ≤ yq[i] ≤ yq−1[i]e

η . (4.8)

Now, since we have at most c of these updates, and we start with y0[i] = 1/n, we have for

all i,
e−ηc

N
=

1

n

c∏
j=1

e−η ≤ y[i] ≤ 1

n

c∏
j=1

eη =
eηc

N
. (4.9)

Now, substituting y[i], we have that

e−2ηc =
e−ηc

N

N

eηc
≤ y[k]

y[j]
≤ eηc

N

N

e−ηc
= e2ηc . (4.10)

Substituting Equation (4.10) into Equation (4.3), we get

RE (x̂∥y)− RE (x∥y) ≤ 1
n

(
2 log n+ log e2ηc

)
= 2

n (log n+ ηc) .

56

4.2 PMW-FSDD-T

Using Lemma 4.2.1, we now bound the number of hard queries in each round (outer loop)

of PMW-FSDD-T .

Theorem 4.2.2 (Hard query threshold of PMW-FSDD-T with no outer update rule).

The bound on the number of hard queries expected at time t, ct, of PMW-FSDD-T (Algo-

rithm 12), instantiated with no outer update rule, is

ct ≤


logN

ηα′ − η2 t = 0

logN

ηϕ

(
2

nϕ
+ 1

)t−1

+
log n

η

((
2

nϕ
+ 1

)t

− 1

)
t > 0

where ϕ := α′ − η − 2

n
, when n >

2

α′ − η .

Proof. This result is inspired by Corollary 16 of Cummings et al. [15].

From Theorem 4.10-4.14 of Dwork and Roth [22] we know that, in the non-private setting,

RE (x̂t∥yt) − RE (xt∥yt+1) ≥ ηα′ − η2, where yt+1 is yt updated using the multiplicative

weights update rule, and α′ ≥ η is the privacy parameter of the SVT subroutine. That

is, each time the synthetic database is updated, the relative entropy decreases by at least

ηα′−η2. We also know that the relative entropy at time t = 0 is bounded above by logN ,

and we can bound the increase in entropy for each update to x using Equation (4.2).

As such, we can set an upper bound on the number of hard queries expected up to time t:

ct ≤
1

ηα′ − η2

(
logN +

2

n

t∑
i=1

(log n+ ηci)

)
. (4.11)

When t > 0, this is equivalent to

ct ≤
1

ηα′ − η2

(
logN +

2

n

(
t log n+ ηct + η

t−1∑
i=1

ci

))

⇒ ct

(
1− 2

n(α′ − η)

)
≤ 1

ηα′ − η2

(
logN +

2t log n

n
+

2η

n

t−1∑
i=1

ci

)
,

(4.12)

and when n > 2
α′−η , this resolves to

⇒ ct ≤
1

η
(
α′ − η − 2

n

) (logN +
2t log n

n
+

2η

n

t−1∑
i=1

ci

)
. (4.13)

57

4.2 PMW-FSDD-T

Now, let w :=
1

η
(
α′ − η − 2

n

) , and let x := w logN , y :=
2w log n

n
, and z :=

2wη

n
, then

we have

ct ≤ x+ ty + z
t−1∑
i=1

ci (4.14)

when the conditions of Equations (4.12) and (4.13) are met. In Lemma 4.2.3 we give a

closed form for Equation (4.14).

Lemma 4.2.3. For t > 0, f ≡ f̂ where

f(t) := x+ ty + z

t−1∑
i=1

f(i)

f̂(t) := x(z + 1)t−1 + y
(z + 1)t − 1

z
.

Proof. We prove this by induction.

First, when t = 1 we have f(t) = f̂(y) = x+ y.

Now, assume that f(k) = f̂(k), i.e. that

f(k) = x(z + 1)k−1 + y
(z + 1)k − 1

z
.

Then we have that

f(k + 1) = x+ (k + 1)y + z
k∑

i=1

f(i)

= x+ ky + z

k−1∑
i=1

f(i) + y + zf(k)

= (z + 1)f(k) + y

= (z + 1)

(
x(z + 1)k−1 + y

(z + 1)k − 1

z

)
+ y

= x(z + 1)k + y

(
(z + 1)

(z + 1)k − 1

z
+ 1

)
= x(z + 1)k + y

(
(z + 1)((z + 1)k − 1) + z

z

)
= x(z + 1)k + y

(
(z + 1)k+1 − 1

z

)
= f̂(k + 1) .

Since f(1) = f̂(1) and f(k) = f̂(k) =⇒ f(k + 1) = f̂(k + 1), we have, by induction, that

f ≡ f̂ .

58

4.2 PMW-FSDD-T

Finally we let ct ≤ f̂(t), by Lemma 4.2.3, and substitute back in the values of w, x, y, z to

get

ct ≤ x(z + 1)k−1 + y
(z + 1)k − 1

z

=
logN

η
(
α′ − η − 2

n

) (2

n
(
α′ − η − 2

n

) + 1

)t−1

+
log n

η

((
2

n
(
α′ − η − 2

n

) + 1

)t

− 1

)
.

(4.15)

From Equation (4.11), substututing t = 0, we have

c0 ≤
logN

ηα′ − η2 ,

and, from Equation (4.15), we have

ct ≤
logN

η
(
α′ − η − 2

n

) (2

n
(
α′ − η − 2

n

) + 1

)t−1

+
log n

η

((
2

n
(
α′ − η − 2

n

) + 1

)t

− 1

)
,

when t > 0 and n >
2

α′ − η .

Applying Theorem 4.2.2, in PMW-FSDD-T for the case where there is no outer update

rule applied, we can take

ψ(t) :=


logN

ηα′ − η2 t = 0

logN

ηϕ

(
2

nϕ
+ 1

)t−1

+
log n

η

((
2

nϕ
+ 1

)t

− 1

)
t > 0

(4.16)

where ϕ := α′ − η − 2

n
, whenever n >

2

α′ − η .

This hard query bound is exponential in t. To improve on this, we now consider an update

rule that applies uniform noise to the public database, y after each update to the true

database, x.

4.2.2 Case 2: uniform outer update rule

Since the version of our algorithm with no outer update rule has a bound on the expected

number of hard queries that is exponential in t, we implement an additional update rule.

This update is performed at line 24. The update rule used by Cummings et al. [15] in

59

4.2 PMW-FSDD-T

PMWG assumes that updates to the database are drawn from a uniform distribution, so

uniform noise is applied across the public histogram to offset the increase in entropy. Here

we apply the same concept under our FSDD model.

Algorithm 13 Uniform public histogram update rule

Input: fractional histogram y ∈ RN

Output: fractional histogram ŷ ∈ RN

1: for each j ∈ N do ŷ[j]← n−1
n y[j] + 1

nN
2: return ŷ

The uniform update rule, given in Algorithm 13, adds uniform noise such that public

histogram will tend towards the uniform distribution when no multiplicative weights up-

dates are applied between database updates. First we upper bound the increase in entropy

caused by a single update to the true database. This is inspired by Lemma 15 of Cum-

mings et al. [16], and only differs significantly in the 2
n log n term from Equation (4.19),

which is omitted by Cummings et al.. All other differences are primarily due to notation

differences between the models.

Lemma 4.2.4. Using the uniform update rule, the entropy increase caused by a single

update to the database is bounded by:

RE (x̂∥ŷ)− RE (x∥y) ≤ 1

n
((n+ 2) log n− (n− 1) log (n− 1) + logN) . (4.17)

Proof. This proof follows the format and some techniques of the proof of Lemma 15 of

Cummings et al. [16].

Assessing the relative entropy increase caused by a single update to the database, and

setting L as the set of indices where yi ≤ 1
N(n−1) and H the set where yi >

1
N(n−1) , we

have

RE (x̂∥ŷ)− RE (x∥y) =
N∑
i=1

(
x̂i log

x̂i
ŷi
− xi log

xi
yi

)

=

N∑
i=1

(x̂i log x̂i − xi log xi) +
∑

i∈{L∪H}

(
x̂i log

1

ŷi
− xi log

1

yi

)
.

(4.18)

From Equation (4.4) we have that

N∑
i=1

(x̂i log x̂i − xi log xi) ≤ 2
n log n . (4.19)

60

4.2 PMW-FSDD-T

To bound the terms including ŷ, y we will use the fact that ŷi =
n−1
n yi +

1
nN . Taking the

set L, where yi ≤ 1
N(n−1) , we use ŷi ≥ 1

nN to find

∑
i∈L

(
x̂i log

1

ŷi
− xi log

1

yi

)
≤
∑
i∈L

(x̂i log (nN)− xi log ((n− 1)N))

=
∑
i∈L

(x̂i − xi) log ((n− 1)N) +
∑
i∈L

x̂i log
n

n−1

≤ log ((n− 1)N)
∑
i∈L

(x̂i − xi)+ + log n
n−1

∑
i∈L

x̂i .

(4.20)

Taking the set H, where yi >
1

N(n−1) , we can use ŷi ≥ n−1
n yi to find

∑
i∈H

(
x̂i log

1

ŷi
− xi log

1

yi

)
<
∑
i∈H

(
x̂i log

1
n−1
n yi

− xi log
1

yi

)

=
∑
i∈H

(
(x̂i − xi) log

1

yi
+ x̂i log

n
n−1

)
≤
∑
i∈H

(x̂i − xi)+ log
1

yi
+
∑
i∈H

x̂i log
n

n−1

≤ log ((n− 1)N)
∑
i∈H

(x̂i − xi)+ + log n
n−1

∑
i∈H

x̂i .

(4.21)

Combining Equations 4.19, 4.20, and 4.21 we find

RE (x̂∥ŷ)− RE (x∥y) ≤ 2
n log n+

N∑
i=1

(
x̂i log

n
n−1 + (x̂i − xi)+ log ((n− 1)N)

)
= 2

n log n+ log n
n−1 + 1

n log ((n− 1)N)

= 1
n ((n+ 2) log n− (n− 1) log (n− 1) + logN) .

(4.22)

Similar to Equations (4.11) and (4.13), we can set an upper bound on the number of

hard queries expected up to time t. Since our entropy bound does not include ct, we are

able to find a closed form hard query threshold using the uniform update rule, given in

Theorem 4.2.5

Theorem 4.2.5 (Hard query threshold of PMW-FSDD-T with uniform update). The

bound on the number of hard queries expected at time t, ct, of PMW-FSDD-T (Algo-

rithm 12), instantiated with the uniform update rule (Algorithm 13), is

ct ≤
1

ηα′ − η2
(
logN +

t

n
((n+ 2) log n− (n− 1) log (n− 1) + logN)

)
.

61

4.2 PMW-FSDD-T

Proof. This result is inspired by Corollary 16 of Cummings et al. [15].

From Theorem 4.10-4.14 of Dwork and Roth [22] we know that, in the non-private setting,

RE (x̂t∥yt) − RE (xt∥yt+1) ≥ ηα′ − η2, where yt+1 is yt updated using the multiplicative

weights update rule, and α′ ≥ η is the privacy parameter of the SVT subroutine. That

is, each time the synthetic database is updated, the relative entropy decreases by at least

ηα′−η2. We also know that the relative entropy at time t = 0 is bounded above by logN ,

and we can bound the increase in entropy for each update to x using Lemma 4.2.4.

ct ≤
1

ηα′ − η2

(
logN +

t∑
τ=1

1

n
((n+ 2) log n− (n− 1) log (n− 1) + logN)

)

=
1

ηα′ − η2
(
logN +

t

n
((n+ 2) log n− (n− 1) log (n− 1) + logN)

)
.

Thus, in this case, we can take

ψ(t) :=
1

ηα′ − η2
(
logN +

t

n
((n+ 2) log n− (n− 1) log (n− 1) + logN)

)
.

This hard query bound is linear in t, a significant improvement over Theorem 4.2.2.

4.2.3 Privacy guarantees

Now we consider the privacy of Algorithm 12, PMW-FSDD-T . Since the outer update rule

is a post-processing step, the privacy guarantee does not depend on the update rule used.

In order to show that PMW-FSDD-T is differentially private we must first guarantee the

differential privacy of the SVT subroutine. The privacy of MSVT follows from the privacy

of the NumericSVT (Algorithm 2).

Lemma 4.2.6 (Privacy of Modified SVT subroutine). The modified SVT subroutine,

MSVT (Algorithm 11), when used in conjunction with PMW-FSDD-T (Algorithm 12), is

ξ-differentially private.

Proof. The modified SVT subroutine at round t is equivalent to the NumericSparse al-

gorithm of Dwork and Roth [22] with an unbounded neighbour definition. We set x =

xt, {qi} = {q̂′t,i}, θ = 2α/3, ε̂ = ε/(2T), c = ct, and enforce the hard query threshold within

PMW-FSDD-T itself, as in the NSG subroutine of PMWG by Cummings et al. [16].

62

4.3 PMW-FSDD-∞

By the privacy of NumericSparse, and converting from unbounded to bounded DP (see

discussion of Definition 2.1.3), the modified SVT subroutine at round t must therefore

be (ε/T)-differentially private. In general, where ε̂ = 2ξ, we have that the subroutine is

ε̂-differentially private.

With the privacy of the subroutine established, we apply basic composition to prove the

privacy of PMW-FSDD-T , since the true database is not accessed outside the subroutine.

Theorem 4.2.7 (Privacy of PMW-FSDD-T). PMW-FSDD-T (Algorithm 12) is

ε-differentially private.

Proof. By Lemma 4.2.6 we have that the modified SVT subroutine for round t is 2ξ-

differentially private. Since the true histogram x is only queried directly via the SVT

subroutine, and the SVT subroutine is re-initialised for each round t, we have, by basic

composition (Theorem 2.1.3) that PMW-FSDD-T is (
∑T

t=0 ξt)-differentially private. By

definition we have:
T−1∑
t=0

2ξ =

T−1∑
t=0

ε

T
= ε .

4.3 PMW-FSDD-∞

Now we consider the infinite update setting, whereby there is no limit, T , on the number

of time periods. As mentioned previously, we cannot rely, like Cummings et al. [15] did in

their PMWG mechanism, on the decreasing sensitivity of queries on a database increasing

in size. Instead, we allocate our privacy budget so that the total privacy allocation does

not exceed ε. We do this by calculating the privacy parameter for each round using a

convergent series. This means that the accuracy is likely to decrease significantly over

time.

For our convergent series, we choose the geometric series. To implement this, we remove

Line 3 of Algorithm 12, instead calculating a fresh privacy parameter ξt ← ε
2k ·

(
k−1
k

)t
,

for some k > 1 inside the outer loop. ξt is passed as the privacy parameter to the MSVT

instance for time t. PMW-FSDD-∞ is otherwise identical to PMW-FSDD-T . This creates

a geometrically decreasing series of ξs such that
∑∞

t=0 ξt converges to ε. Thus, the accuracy

63

4.3 PMW-FSDD-∞

of the SVT subroutine decreases over time, with the rate of this decrease dependent on

the choice of k. Below, we prove the privacy of this version, however any convergent series

could be used in place of the geometric series with similar privacy results.

Lemma 4.3.1 (Privacy of Modified SVT subroutine in the infinite update setting). The

modified SVT subroutine, Algorithm 11, when used in conjunction with PMW-FSDD-∞,

is ε̂-differentially private.

Proof. The modified SVT subroutine at round t is equivalent to NumericSVT with an

unbounded neighbour definition, with x = xt, {fi} = {f̂ ′t,i}, θ = 2α
3 , ε = ε

2k ·
(
k−1
k

)t
, c =

ct, δ = 0 with the hard query threshold enforced by PMW-FSDD.

By the privacy of NumericSVT, and using group privacy to convert from unbounded to

bounded DP, the modified SVT subroutine at round t must therefore be (εk ·
(
k−1
k

)t
, 0)-

differentially private. In general, where ε̂ = 2ξt for some t, we have that the subroutine is

ε̂-differentially private.

Theorem 4.3.2 (Privacy of PMW-FSDD-∞). PMW-FSDD-∞ is ε-differentially private.

Proof. By the privacy of MSVT we have that the modified SVT subroutine for round t

is ξt-differentially private. Since the true database x is only queried directly via the SVT

subroutine, and the SVT subroutine is re-initialised for each round t, we have, by basic

composition that PMW-FSDD is (
∑∞

t=1 ξt)-differentially private. By definition we have:

∞∑
t=1

2ξt =

∞∑
t=1

(
ε

k
·
(
k − 1

k

)t
)

for some k > 1, and by the geometric series we have:

∞∑
t=1

(
ε

k
·
(
k − 1

k

)t
)

=
ε

k
· 1

1− k−1
k

= ε.

In this chapter we have outlined how the τ -RBB mechanism can be utilised to answer

interactive queries, and provided an alternative in a modification of the PMWG algorithm

of Cummings et al. [15] to the FSDD setting. We have provided proof of the privacy of

these mechanisms, as well as a bound on the (α, β)-accuracy of τ -RH for the set of linear

counting queries. In Section 5.3 we compare the accuracy of these methods empirically.

64

Chapter 5

Experimental Evaluation

In this chapter, we present the results of experimental evaluation of the algorithms intro-

duced in Chapters 3 and 4. We show that, in the FSDD context, our τ -RQ mechanisms

often provide better accuracy than adaptive alternatives such as the sparse vector tech-

nique (SVT) and the private multiplicative weights technique (PMW), while maintaining

the same privacy guarantees.

In Section 5.2 we compare τ -RQ to an SVT-based mechanism, ARQ, for FSDD data. We

first present analysis over a variety of synthetic data sets and then compare those to a

real data set. We find that τ -RQ consistently provides better accuracy than ARQ for data

streams that shift in distribution over time, while ARQ sometimes performs better than

τ -RQ when data remains uniformly distributed. In Section 5.3 we evaluate τ -RBB against

PMW for mean and histogram queries. We find that τ -RBB performs significantly better

than PMW across all experiments.

5.1 Experiment setup

Before presenting experimental results, we first describe the protocols, data sets, and

queries used throughout.

65

5.1 Experiment setup

5.1.1 Protocols

All data synthesis and experiments are performed on either macOS with a 2.3 GHz Quad-

Core Intel Core i7 CPU, Intel Iris Plus Graphics 1536 MB GPU and 16 GB memory, or

on a Linux virtual machine running Ubuntu with an AMD Epyc 7763 64-core processor

(using 4 cores) and 16 GB memory. All mechanisms are implemented using Python 3.11.4,

with all randomness generated using methods of the NumPy 1.24.2 Random Generator

pseudo-random number generator.

Unless otherwise specified, each experiment is repeated 100 times, each with unique ran-

dom seeds for each trial, and the same seed sequence used for each experiment, for repli-

cability. For the repeated query streams, we use two lists of 100 random seeds, one for

random noise generation and one for data stream generation. The two lists are initially

generated from arbitrary, system-generated random seeds, and used consistently through-

out. For interactive query streams, both the data and queries are generated once for each

parameter set, from arbitrary, system-generated random seeds, and noise is generated from

a single list of 100 random seeds. In all experiments we are interested in the absolute

additive error of our differentially private mechanisms, relative to the non-private query

answers.

There are some limitations to the experiments completed. First, the scope is limited by

time and resource constraints. Our experiments involving the ARQ and PMWmechanisms

do not include update streams larger than T = 2000, and use limited sets of parameters,

due to their run-time. The real data available for use in experiments was limited as we

do not have access to datasets matching the FSDD parameters. Second, the code used

to run these experiments is not suitable for deployment. Pseudo-random noise has been

sampled using a non-private library. While this is suitable to examine the noise magnitude

of mechanism that are private in theory, it is vulnerable to side-channel attacks, such as

those described by Mironov [57].

5.1.2 Synthetic data

We now describe synthetic data used in experiments. Since all of our chosen queries can

be performed on a histogram of counts, we represent each database as a histogram. This

improves the efficiency of storing the database stream and performing queries. An initial

66

5.1 Experiment setup

database is generated for time t = 0, then an update applied according to some update

rule for each time t ∈ [1..T −1]. A data stream is this sequence of T histograms, including

the initial histogram and the histograms resulting from each update.

We have three synthetic data stream types, with varying degrees and types of randomness,

chosen to demonstrate the behaviour of our mechanisms in a variety of scenarios. A

uniform data stream is a low entropy, randomly generated set of updates, starting with a

(near-)perfectly uniform histogram at time 0. A binomial data stream is shifting from a

binomial distribution with a small to a large success probability as it is updated, giving it

a relatively large expected update effect for most query types. A sharp-shift data stream

is deterministic, and contrived such that the update effect, for most query types, is very

small during the first half of updates and very large during the second half. Except where

synthetic data streams are generated to match the parameters of real data, all streams

have N = 10 histogram buckets.

Uniform data stream. We use uniformly random data as an example of data that

behaves furthest from what we would expect to cause worst-case error, since the cumulative

effect of updates is negligible in expectation.

Algorithm 14 Uniform synthetic data stream generator

Input: Time bound T , database size n, data universe size N
Output: List of histograms x indexed 0, ..., T − 1
1: if n mod N = 0 then ▷ can be uniformly bucketed
2: x0 ← N buckets of size n/N
3: else
4: r ← n mod N ▷ number to be randomly distributed
5: x0 ← N buckets of size (n− r)/N
6: for i← 1, ..., r do
7: Increment random bucket of x0
8: for t← 1, ..., T − 1 do
9: xt ← xt−1

10: Decrement a random, positive valued, bucket of xt
11: Increment a random bucket of xt

The initial uniform database is generated as a histogram. If possible, each bucket contains

exactly the same count n/N ; otherwise, where n mod N = r, each bucket has an initial

count (n− r)/N , with the remaining r records distributed between buckets uniformly at

random. The updates are generated uniformly at random: one random, non-zero bucket

has one record removed, and one bucket has one record added, to simulate a state change

67

5.1 Experiment setup

for a single individual. It is possible for the record to move to the same bucket it came from

during a single update, resulting in no change to the histogram. For each random update

seed, both the initial histogram x0 and the updated histograms x1, ..., xN are generated

from the same seed during computation. Algorithm 14 shows the process used to generate

the histograms and Figure 5.1 plots example histograms over time, demonstrating how

the updates affect the data.

0

50

100

t = 0 t = 499 t = 999

Figure 5.1: Histograms over time for uniform data for a single random seed. Parameter
choices are N = 10, T = 1000, n = 1000.

Binomial data stream. We generate a data stream shifting from one binomial dis-

tribution to another as an example of a randomised update distribution with a large

expected cumulative effect over time. This simulates a population trend shifting from

one median state to another. The initial histogram is generated from a binomial dis-

tribution with success probability p0 = 0.2. To generate an update, the from bucket is

selected such that each individual has equal probability of being selected, by weighting

bucket probabilities by their counts. The to bucket is chosen randomly according to a

binomial distribution with success probability pu = 0.8. This process is described in Al-

gorithm 15. The initial histogram for each set of parameters is generated once from an

arbitrary, system-generated random seed and fixed across all experiments. The updates

are generated using the update seed list. The binomial distribution is simulated using the

numpy.random.Generator.binomial function with parameters (N − 1, p).

Algorithm 15 Binomial synthetic update generator

Input: Time bound T , database size n, data universe size N , initial histogram x0 ∼
Binomial(N − 1, 0.2)

Output: List of updated histograms x indexed 1, ..., T − 1
1: for t← 1, ..., T − 1 do
2: xt ← xt−1

3: Choose a bucket randomly, with probability proportional to the bucket counts
4: Select a random index i from 1, ..., N according to Binomial(N − 1, 0.8)
5: Increment xt[j]

68

5.1 Experiment setup

For all updates, the new state of the updated individual is likely to be a high value, as

it is drawn from a binomial distribution with a high probability of success. Since the

initial data is drawn from a binomial distribution with a low probability of success, the

individuals updated in early updates are likely to start in a state with a low value, and

thus the effect of the update, for queries correlated to the sum of the data values (such

as mean queries, and the count of a high-valued bucket), will be large. As the updates

continue, the data distribution stabilises toward the binomial distribution with a high

probability of success, and the expected update effect reduces. Figure 5.2 plots example

histograms over time, demonstrating these update effects.

0

100

200

300

t = 0 t = 499 t = 999 t = 4999 t = 9999

Figure 5.2: Histograms over time for binomial synthetic data for a single random seed.
Parameter choices are N = 10, T = 10000, n = 1000.

Sharp-shift data stream. The sharp-shift data stream, generated according to Algo-

rithm 16, is contrived to produce small update effects during the first half of updates and

large update effects during the second half of updates, such that the best choice of sample

frequency is dramatically different at different times. Figure 5.3 plots histograms over

time, demonstrating this effect. This stream is deterministic, with all n records in bucket

1 at time 0, shifting to bucket 2 for the first half of the updates and then to bucket N

for the second half of updates, such that the update effect, for most query types, is small

during the first half of update and large during the second half.

0

500

1000
t = 0 t = 499 t = 999 t = 1999

Figure 5.3: Histograms over time for sharp-shift synthetic data for a single random
seed. Parameter choices are N = 10, T = 2000, n = 1000.

69

5.1 Experiment setup

Algorithm 16 Sharp-shift synthetic data stream generator

Input: Database size n, data universe size N , time bound T ≤ 2n
Output: List of histograms H indexed 0, ..., T − 1
1: x0[1]← n, x0[2, ..., N]← 0
2: for t← 1, ..., ⌊(T − 1)/2⌋ do
3: xt ← xt−1

4: Decrement xt[1]
5: Increment xt[2]
6: for t← ⌈T/2⌉, ..., T − 1 do
7: xt ← xt−1

8: if xt[1] > 0 then Decrement xt[1]
9: else Decrement xt[2]

10: Increment xt[N]

5.1.3 Real data

The Adult data set, obtained from the UCI Machine Learning Repository 1, is taken

from the 1994 US census and contains 32,561 records, each with 15 attributes. Table 5.1

describes the subsets of the Adult data set used in the experiments. We use the Age

attribute in experiments, and split it, according to the Income attribute, into an initial set

(where income ≤ 50K) and an update set (where income > 50K). The number of updates

is limited by the size of the update set, so that T = 7841. At each time t ∈ [1..T] an

element in the database is selected, uniformly at random, and replaced with an element

drawn, uniformly at random, from the update set. Figure 5.4 shows how this data stream

changes over time. This method of generating a dynamic data stream from a static set of

census data is inspired by a similar technique used by Li et al. [52] to generate time-series

data.

Table 5.1: Attributes of the Adult data used in experiments

Attribute type range notes

Age integer [17..90]
Technically categorical (ordinal), where
the ’90’ category includes all individuals
aged ≥ 90.

Income
categorical
(ordinal)

{≤50K, >50K} set sizes 24,720 and 7,841 respectively

1https://archive.ics.uci.edu/dataset/2, DOI: 10.24432/C5XW20

70

https://archive.ics.uci.edu/dataset/2

5.1 Experiment setup

0

250

500

750

t = 0 t = 3920 t = 7841

Figure 5.4: Histograms over time for Adult (Age) data stream for a single random seed.

5.1.4 Queries

Now we describe the queries used in our experiments. In the repeated query setting,

where a single query is repeated after each update, we select three common queries. In

the interactive setting, we must also generate streams of queries over time. For simplicity,

and to align with the design of PMW, all interactive queries are linear counting queries.

Repeated queries. For repeated query experiments, three queries are used in experi-

mental analysis. For a summary statistic, we choose the mean query, which calculates the

mean over real-valued buckets of a histogram. For a targeted query, we choose a count

query, counting the number of database elements in the final bucket of the histogram.

Finally, for a bad case in terms of the privacy/accuracy trade-off, we choose the histogram

query, returning the entire histogram. Table 5.2 summarises the true (non-noisy) defini-

tions of these queries, as well as the distance measures used in ARQ calculations and the

sensitivity used in noise scales.

Table 5.2: Queries used in repeated query experiments, for database D = D1, ..., Dn or
count histogram x = {x[1], ..., x[N]} where x[i] = |{j : D[j] = X [i]}| over data universe
X = {X [1], ...,X [N]}. Where X is ordinal, we assume it indexed in ascending order.

Query Database function Histogram function Distance measure Sensitivity
name q(D) q(x) d(q(D), q(D′)) ∆q

mean 1
n

∑n
i=1D[i] 1

n

∑N
i=1 x[i] · X [i] |q(D)− q(D′)| X [N]−X [1]

n

count |{i : D[i] = X [N]}| x[N] |q(D)− q(D′)| 1

histogram {x[1], ..., x[N]} x
∑N

i=1 |x[i]− x′[i]| 2

Where each individual in the database takes a value in [1..N] at each time t ∈ [0..T − 1],

Figure 5.5 shows how the mean value across all individuals changes over time for the three

synthetic data streams, where N = 10, time bound T = 2000, and number of individuals

n = 1000. The distribution of histograms and bucket counts over time are shown in

Figures 5.1 to 5.4

71

5.1 Experiment setup

0 250 500 750 1000 1250 1500 1750 2000

2.5

5.0

7.5

10.0
Uniform

0 250 500 750 1000 1250 1500 1750 2000

2.5

5.0

7.5

10.0
Binomial

0 250 500 750 1000 1250 1500 1750 2000

2.5

5.0

7.5

10.0
Sharp-shift

Time t

m
ea
n
bu
ck
et

va
lu
e

Figure 5.5: Mean individual state value (in [1, N]) over time for uniform, binomial,
and sharp-shift synthetic data streams for a single random seed. Parameter choices are

N = 10 histogram buckets, T = 2000 time periods, and n = 1000 individuals.

Interactive queries. For interactive query experiments, we must have a set of possible

queries, and some ordered subset of those queries asked between updates. We have chosen

five sets of possible linear queries, of various sizes. The largest is the set of all linear

counting queries, followed by range queries, and finally single bucket counts. The sets of

counting and range queries can be optimised, removing the queries that count all buckets

and no buckets, as well as symmetric queries. For example, for a histogram of size N = 3,

the query [011] can be answered by subtracting the answer to query [100] from n or 1

for histograms and normalised histograms respectively. Table 5.3 described the details of

these query sets.

Algorithm 17 shows how we generate synthetic interactive query streams. The number

and order of queries for each time t are chosen uniformly at random. For each experiment,

where the query set is Q, some k ≤ |Q| is chosen to limit the number of queries that

72

5.1 Experiment setup

Table 5.3: Query sets used in interactive query experiments.

Query set Q Description |Q| when N = 10

All count
All linear queries with weight in {0, 1},
excluding the all 0 and all 1 queries

2N − 2 = 1022

Optimised count
All count queries with larger of symmetric
pairs removed

(2N − 2)/2 = 511

All range
All range queries, excluding the all 0 and all
1 queries

54

Optimised range
All range queries with larger of symmetric
pairs removed

45

Single count Single bucket counts N = 10

may be asked in each time period. For each time period, the number of queries is chosen

uniformly from [0..k] and the queries are chosen uniformly at random from Q, with no

query repeated in a single time period. Query streams are generated in advance, with one

query stream generated for each set of parameters (N,T,Q, k), with the same stream used

for all experiments with the same query parameters.

Algorithm 17 Interactive stream generator

Input: Query set Q, query limit k ≤ |Q|, time bound T
Output: Query stream Q0, ..., QT−1, where each Qi is some ordered subset of Q and

|Qi| ≤ k
1: for t← 0, ..., T − 1 do
2: m ∈ [0..k] chosen uniformly at random
3: for i← 1, ...,m do
4: Qt[i] ∈ Q/Qt[: i− 1] chosen uniformly at random

Real query streams. We use the Kosarak click-stream dataset2 as an interactive query

stream. The original dataset contains 990,002 sequences of integers between 1 and 41,270,

representing sequences of website clicks from a Hungarian news portal. We transform

these integers to 16-bit binary strings, used as linear count queries on our synthetic data

streams as described in Section 5.1.2, with N = 16.

For experiments where time bound T is less than the total number of sequences in the

Kosarak dataset, we select the first T sequences as our query stream. Table 5.4 shows

the median and maximum sequence length, and how frequently each of the 16 histogram

buckets are included in a linear count query. We see that the median sequence lengths

and buckets per query remain stable at around 3 and 5, respectively, while the maximums

2http://fimi.uantwerpen.be/data/kosarak.dat

73

http://fimi.uantwerpen.be/data/kosarak.dat

5.2 Repeated query experiments

increase as we include more sequences. In the case of sequence lengths, this is explained

by long sequences of queries being relatively rare.

Table 5.4: Sequence lengths and buckets per linear count query of Kosarak query streams
of size T = {100, 1000, 2000, 990002}

T
Sequence lengths Buckets per query

Med Mean Max Med Mean Max

100 3 7.75 182 4 3.83 8

1000 3 8.58 430 5 4.52 11

2000 3 8.39 430 5 4.62 12

990,002 3 8.10 2498 5 4.82 15

Figure 5.6 shows how frequently each of the histogram buckets is included in a query, as

a fraction of all queries. Note that the fractions do not sum to 1 because multiple buckets

can appear in a single query. We see that higher bucket values occur much more frequently

than lower value buckets. This is due to large integers being rare in the original dataset,

and explains why queries containing large numbers of buckets do not often appear.

0.0

0.2

0.4

0.6
T = 100 T = 1000 T = 2000 T = 990002

Figure 5.6: Frequency of histogram buckets in kosarak queries, as proportion of all
queries, for various sized subsets and all queries.

5.2 Repeated query experiments

We now show the findings of experiments in the repeated query setting. In Sections 5.2.1

and 5.2.2 we show experimental analysis of τ -RQ and τ -RBB, on the synthetic data de-

scribed in Section 5.1.2 and queries described in Section 5.1.4. First, we give an example of

how the best choice of τ -RQ differs between the theory and experiments, then we compare

τ -RQ and ARQ. We find that τ -RQ has lower error in most experiments, but has similar

error to ARQ for the uniform data stream. In Section 5.2.3 we repeat the comparison

experiments using a real data set as described in Section 5.1.3.

74

5.2 Repeated query experiments

Throughout, DP mean and count queries are performed using τ -RQ and DP histogram

queries using τ -RBB instantiated with the Laplace mechanism for histograms described

in Definition 2.1.7.

5.2.1 Experimental results vs. theoretical bounds

Before comparing τ -RQ to an ARQ baseline, we examine how it performs on a synthetic

data set relative to the theoretical error bound shown in Theorem 3.2.4.

21 23 25 27 29

τ (log2 scale)

2−1

21

23

25

27

A
d
d
it
iv
e
er
ro
r
(l
o
g
2
sc
al
e)

α

min. α

max err

mean err

99th % max err

Figure 5.7: Additive error of τRQ-FSDD experiment outputs for the mean function,
for various choices of τ , plotted against theoretical accuracy bound α. Parameter choices
are β = 0.01, ε = 1.0, N = 10, T = 1000, n = 1000. Experiment outputs show the mean
of mean errors, max of max errors, and 99th percentile of max errors across 1000 trials

for each sample frequency parameter τ .

Figure 5.7 shows the results of experiments running τ -RQ, on the binomial data stream,

for the mean query against various choices of τ ∈ [1..T]. Plots are shown for privacy

parameter ε = 1.0 and database size n = 1000. The theoretical upper bound on error α

is shown for comparison. By choosing β = 0.01 we expect that one out of the 100 trials

may have a maximum error exceeding α.

75

5.2 Repeated query experiments

As in Figure 3.4 we see that, at first, error decreases as τ increases. With low τ we have

higher cutoff c =
⌈
T
τ

⌉
, and thus larger Laplacian noise. Once τ becomes significantly large

we see that the effect of updates begins to dominate, and error begins increasing. In this

example, the synthetic data does not have the worst case effect of ∆q for every update,

so we see that as the update effect dominates, the experimental results begin to diverge

from the theoretical bound.

5.2.2 Results on synthetic data streams

In this section we show the results of both τ -RQ and ARQ across the synthetic data

streams and queries described in Section 5.1.2. We first show results for a fixed set of

parameters for all datasets and queries, then the results of varying parameters ε, T, and

n. We find that τ -RQ generally performs better than ARQ for the binomial and sharp-

shift streams, and that both methods have similar accuracy for the uniform stream. A

high-level discussion of the results is provided in Section 5.4.

We implement ARQ as in Algorithm 9, with the exception that we use an optimised

NumericSVT, as in Algorithm 3, as the subroutine. While we are not able to prove

the privacy of the optimised NumericSVT for adaptive queries, it has better accuracy

than standard NumericSVT, providing a more competitive experimental baseline. ARQ

experiments are run using the same random seeds as in τ -RQ for each of the 100 trials.

Since we do not have a general method for choosing the hard query cutoff c and the

decision fraction d for ARQ, we run τ -RQ for all choices of τ in the minimum distinct τ

set described in Section 3.2, and ARQ for equidistant choices of c, such that the number

of choices is close to the number of choices of τ , and with d ∈ 0.25, 0.5, 0.75. Thus, we are

comparing multiple instantiations of both τ -RQ and ARQ, and presenting only the results

of the instantiation with the smallest error for each mechanism and measure.

We give three measures of absolute error: median of medians gives the median of the set

containing the minimum median error for each of the 100 trials; median of means gives

the median of the set containing the minimum mean error for each of the 100 trials; max

gives the median of the set containing the minimum maximum error for each of the 100

trials. For each trial, the minimum of each of the measures is taken across each choice of

τ for τ -RQ and all combinations of c and d for ARQ, where the measure itself is across

all T time periods in that trial.

76

5.2 Repeated query experiments

Figure 5.8 shows, at a high level, the process and outputs of the experiment simulations.

Figure 5.8: High level process of repeated query experiments.

Figure 5.9 compares results across all data streams and query types. As expected, based

on how the synthetic data sets are constructed (see Section 5.1.2), we find that the uniform

stream tends to have the lowest absolute error, while the sharp-shift stream has the highest.

We see that τ -RQ outperforms ARQ in most of these experiments, with some notable

exceptions.

Influence of data stream. For the uniform data stream we see that τ -RQ and ARQ

are often close, with ARQ performing better than τ -RQ for histogram queries for the two

central measures of error. We observed that, for the uniform data stream, the best choice

of cutoff for ARQ was frequently c = 1. This indicates that the initial uniform answer

released by ARQ is closer to the true answer than the noisy answers released by τ -RQ,

even for large τ .

For the count query we have that the median of medians does not follow the general trends

for the sharp-shift data stream. This is because of how the stream is constructed, with

the first half of updates having very low effect and the second half having high effect.

77

5.2 Repeated query experiments

10−1

100
M
ea

n
qu

er
y

Median f mean err rs
τ-RQ
SVT

Max err r

101

102

C
un

t q
ue

ry

Unif rm Bin mial Sharp-shift

102

103

Hi
st
 g

ra
m
 q
ue

ry

Unif rm Bin mial Sharp-shift
Data stream

Ad
di
tiv

e
er
r
r (
lo
g 1

0
 sc

al
e)

Figure 5.9: Comparison of τ -RQ and ARQ across multiple data/update distributions
(uniform, binomial, and sharp-shift) and query types (mean, histogram, and count), with
parameters ε = 1.0, T = 1000, n = 1000 fixed. Additive error is taken first over all

updates in a trial, then over all trials.

10−1

100

M
ea
n
 u
er
y

Uniform stream Binomial stream

0.5 1.0 1.5 2.0

102

103

Hi
st
og
ra
m

ue
ry

τ-RQ median of mean errors
SVT median of mean errors
τ-RQ max error
SVT max error

0.5 1.0 1.5 2.0
ε

Ad
di

tiv
e

er
ro

r (
lo

g 1
0
 sc

al
e)

Figure 5.10: Comparison of τ -RQ and ARQ, for mean and histogram queries on uniform
and binomial distributions, across a range of privacy parameters ε ∈ {0.25, 0.5, 1.0, 2.0},

and fixed update rounds T = 1000 and database size n = 1000.

78

5.2 Repeated query experiments

10−1

100

M
ea

n
qu

e
y

Unifo m st eam Binomial st eam

500 1000 1500 2000

102

103

Hi
st

og
 a

m
 q

ue
 y

τ-RQ median of mean e o s
SVT median of mean e o s
τ-RQ max e o
SVT max e o

500 1000 1500 2000
T

Ad
di

tiv
e

e
 o

 (
lo

g 1
0
 sc

al
e)

Figure 5.11: Comparison of τ -RQ and ARQ, for mean and histogram queries on uniform
and binomial distributions, across a range of update round counts T ∈ {100, 1000, 2000},

and fixed database size n = 1000 and privacy parameter ε = 1.0.

10−3

10−2

10−1

100

M
ea
n
 u
er
y

Uniform stream Binomial stream

103 104 105

102

103

Hi
st
og
ra
m

ue
ry

τ-RQ median of mean errors
SVT median of mean errors
τ-RQ max error
SVT max error

103 104 105

n (log10 scale)

Ad
di

tiv
e

er
ro

r (
lo

g 1
0
 sc

al
e)

Figure 5.12: Comparison of τ -RQ and ARQ, for mean and histogram queries on uniform
and binomial distributions, across a range of database sizes n ∈ {103, 104, 105}, and fixed

update rounds T = 1000 and privacy paramter ε = 1.0.

79

5.2 Repeated query experiments

The median is thus taken from the low effect updates. ARQ performs better in this case

because it is choosing a low c and investing all its privacy budget in the first sample.

Influence of privacy parameter. Figure 5.10 shows results of varying ε within {0.25,
0.5, 1.0, 2.0}. As expected, we see that the error decreases as ε increases. On the uniform

data stream, we see ARQ generally outperforming τ -RQ for very small ε. This is, again,

is because the best choice of cutoff is usually c = 1, so ARQ not be releasing noisy answers

at all in these cases, since when ε is small, noise is larger.

Influence of time bound. Figure 5.11 shows results of varying T . We choose T in the

set {100, 1000, 2000} primarily to show variance while being able to complete experiments

in a tractable time. As expected, we see that error increases as the number of updates

increases.

Influence of database size. Figure 5.12 shows results of varying n. We choose n =

1000 as our minimum as it allows us to demonstrate the sharp-shift stream to its full

effect for T = 2000. We then increase twice, in powers of 10, so that we can see the effect

of a large population on query types that have sensitivity dependent on n, and of the

relationship between T and n in terms of the maximum effect on the data distribution of

updates.

For the histogram query, sensitivity is not tied to the database size, so we do not see a

dramatic change in error as we vary n. For the mean query, sensitivity decreases as n

increases, so we see error trending down. The relationship between τ -RQ and ARQ are

relatively consistent across choices of n.

5.2.3 Results on real data with synthesised updates

In this section we present the results of the same experiments as in Section 5.2.2, this time

including the Adult data stream described in Section 5.1.3.

Figure 5.13 shows results of experiments comparing the error rates of τ -RQ and ARQ on

the Adult (Age) dataset and the synthetic uniform and binomial data streams. To match

the properties of the real data set, we choose n = 24720, T = 7841, and X = [17..90] such

80

5.3 Interactive query experiments

10−2

10−1

100

101
M
ea
n
 u
er
y

Median of mean errors
τ-RQ
SVT

Max error

Adult(Age) Uniform Binomial102

103

104

Hi
st
og
ra
m

ue
ry

Adult(Age) Uniform Binomial
Data stream

Ad
di
tiv
e
er
ro
r (
lo
g 1

0
 sc

al
e)

Figure 5.13: Comparison of τ -RQ and ARQ across multiple data/update distributions
and query types, with paramaters taken from the Adult (Age) dataset.

that N = 74. We do not assess the count query in this case, since it was optimised in the

synthetic data experiments to catch the maximum effect of the sharp-shift stream, and a

large effect from the binomial stream.

We see that the results follow the trends of the synthetic data streams, with error falling

between those for the uniform and binomial data. Error values in general are larger

than in previous experiments due to the higher time bound, T and number of histogram

buckets, N .

5.3 Interactive query experiments

We now present the results of experiments in the interactive setting, comparing the mech-

anisms described in Chapter 4. In Section 5.3.1 we show results of experiments with both

synthetic data and synthetic query streams. In Section 5.3.2 we show results of exper-

iments with synthetic data streams and a real query stream. A high-level discussion of

the results is provided in Section 5.4. In these experiments we again find that our τ -RQ

81

5.3 Interactive query experiments

mechanism achieves lower additive error than the comparison mechanism; in this case,

PMW-FSDD-T .

5.3.1 Results on synthetic data and query streams

In this section, we present the results of interactive query experiments for the synthetic

data streams described in Section 5.1.2, with synthetic query streams described in Sec-

tion 5.1.4. In this section we compare PMW-FSDD-T to the interactive version of τ -RQ

described in Section 4.1, τ -RH. We instantiate τ -RH with τ chosen according to Equa-

tion (3.3) with α chosen as given in Theorem 4.1.2. We see that τ -RH has smaller additive

error than PMW-FSDD-T across all experiments.

Influence of data and query streams. Figure 5.14 shows the median, across 100

trials, of the mean, across all queries, of additive error for various query streams; for all

synthetic data streams, with default parameters for privacy, time bound, and number of

individuals. Figure 5.15 similarly shows the maximum additive error. We see that τ -RH

has smaller median of mean additive error across all experiments. The choice of data

stream has a smaller effect on error than in the repeated query experiments, but follows a

similar pattern, where the uniform data stream has the smallest error and the sharp-shift

stream the largest. The choice of PMW threshold parameter α has varying effects for

different query sets and query limits k, and is relatively unaffected by the data stream.

It is interesting to note that PMW-FSDD-T performs better for larger query sets. We

expect that this is because there are more similar queries that can be asked for non-

optimised data sets, so that they are more likely to closely match the public histogram.

Relative to τ -RH this relationship is more dramatic, so further experimentation with larger

query sets may reveal an improvement in the error of PMW-FSDD-T over τ -RH.

Influence of varying parameters. Figure 5.16 shows the effect of varying the data

stream parameters for privacy, database size, and time bound. Interestingly, we see that

varying the privacy parameter ε has very little effect on the error of PMW-FSDD-T . This

requires further investigation. The choice of the threshold parameter α in PMW-FSDD-T

has varying effect when the database size or time bound are changed. Further investigation

82

5.3 Interactive query experiments

0.0

0.1

0.2

0.3

0.4

0.5 All count queries, k=1022 Optimised count queries, k=511

0.0

0.1

0.2

0.3

0.4

0.5 Optimised range queries, k=45 Optimised range queries, k=10

Uniform Sharp-shift Binomial0.0

0.1

0.2

0.3

0.4

0.5 Optimised count queries, k=10

Uniform Sharp-shift Binomial

Single buc et count queries, k=10
τ-RQ histogram
PMW: α=0.001
PMW: α=0.05

PMW: α=0.1
PMW: α=0.3

Data stream

M
ed

ia
n
m
ea

n
ad

di
tiv

e
er
ro
r

Figure 5.14: Comparison of additive error (median over trials of mean over queries in
each trial) for τ -RH and PMW-FSDD-T for synthetic data streams and various linear
query sets. The queries in each round are chosen uniformly at random from the query
set, with the number of queries chosen uniformly in [0..k]. All experiments have privacy

parameter ε = 1.0, time bound T = 1000 and number of individuals n = 1000.

83

5.3 Interactive query experiments

0.0

0.2

0.4

0.6

0.8

1.0
All count queries, k=1022 Optimised co,nt q,eries, k=511

0.0

0.2

0.4

0.6

0.8

1.0
Optimised range q,eries, k=45 Optimised range q,eries, k=10

Uniform S arp-s ift Binomial0.0

0.2

0.4

0.6

0.8

1.0
Optimised co,nt q,eries, k=10

Uniform S arp-s ift Binomial

Single b,cket co,nt q,eries, k=10

τ-RQ istogram
PMW: α=0.001
PMW: α=0.05

PMW: α=0.1
PMW: α=0.3

Data stream

M
a.
im
,m

 a
dd

iti
-e
 e
rro

r

Figure 5.15: Comparison of additive error (maximum over all queries in all trials) for
τ -RH and PMW-FSDD-T for synthetic data streams and various linear query sets. The
queries in each round are chosen uniformly at random from the query set, with the number
of queries chosen uniformly in [0..k]. All experiments have privacy parameter ε = 1.0,

time bound T = 1000 and number of individuals n = 1000.

84

5.3 Interactive query experiments

into the choice of the α parameter is needed, including trying more choices, to determine

explanations of its effect over all experiments.

0.25 0.50 1.00 2.00
ε (log10 cale)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

τ-RQ hi togram
PMW: α=1/n
PMW: α=0.05
PMW: α=0.1
PMW: α=0.3

1000 2000
T

103 104 105

n (log10 cale)

M
ed

ia
n
m
ea

n
ad

di
tiv

e
er
ro
r

Figure 5.16: Comparison of additive error (median across all trials of mean across all
queries in each trial) for τ -RH and PMW-FSDD-T for the binomial data stream with
optimised count queries. The queries in each round are chosen uniformly at random from
the query set, with the number of queries in each round chosed uniformly in [0..1022].

Default parameter values are ε = 1.0, T = 1000 and n = 1000.

5.3.2 Results on real query stream

In this section we present the results of repeating the experiments described in Section 5.3.1

using queries taken from the Kosarak query stream described in Section 5.1.4. For these

experiments we increase the default parameter for the time bound to T = 2000, to allow

more of the Kosarak query sequences to be included.

Figure 5.17 shows the median mean error of our query streams with Kosarak queries, with

synthetic query streams shown for comparison. We see that the error of PMW-FSDD-T

for this real query stream is higher, for most choices of α, than the synthetic streams. The

error of τ -RH on the other hand is similar to that for range queries, and significantly less

than PMW-FSDD-T across all data streams.

Influence of data stream. In Figure 5.17 we see that τ -RH exhibits the familiar be-

haviour of error increasing from uniform to binomial to sharp-shift distributions. PMW-

FSDD-T is fairly consistent across distributions, but shows a similar pattern.

Influence varying parameters. Figure 5.18 shows the effect of varying the data stream

parameters for privacy, database size, and time bound, for the binomial data stream.

85

5.4 Discussion

When varying epsilon we see a similar pattern to Figure 5.16, with ε having little effect

on the error of PMW-FSDD-T , while τ -RH displays the expected behaviour of decreasing

error with increasing ε. The effects of varying n and T , are also similar to the synthetic

experiments. τ -RH displays decreasing error with increasing dataset size and increasing

error with increasing time bound. The effects of these parameters for PMW-FSDD-T vary

between different choices of PMW parameter α.

5.4 Discussion

Our τ -RQ mechanisms have shown smaller additive error than the adaptive comparison

algorithms, the SVT-based ARQ and PMW-FSDD-T , across most experiments and all

0.0

0.1

0.2

0.3

0.4

0.5
Kosarak queries Count queries

Uniform Binomia Sharp-shift0.0

0.1

0.2

0.3

0.4

0.5
Range queries

Uniform Binomia Sharp-shift

Sing e bucket counts
τ-RQ histogram
PMW: α= 0.001
PMW: α= 0.05

PMW: α= 0.1
PMW: α= 0.3

Data stream

M
ed

ia
n

m
ea

n
ad

di
tiv

e
er

ro
r

Figure 5.17: Comparison of additive error (median across all trials of mean across all
queries in each trial) of the Kosarak query stream to the count query stream (optimised,
k = 511), range query stream (optimised, k = 45), and single bucket count query stream
(k = 10), for τ -RH and PMW-FSDD-T across multiple data stream types (uniform,
binomial, and sharp-shift). All experiments have privacy parameter ε = 1.0, time bound

T = 2000 and number of individuals n = 1000.

86

5.4 Discussion

0.25 0.50 1.00 2.00
ε (log10 cale)

0.0

0.1

0.2

0.3

0.4

0.5

1000 2000
T

103 104 105

n (log10 cale)

τ-RQ hi togram
PMW: α=1/n
PMW: α=0.05
PMW: α=0.1
PMW: α=0.3

M
ed

ia
n
m
ea

n
ad

di
tiv

e
er
ro
r

Figure 5.18: Comparison of additive error (median across all trials of mean across all
queries in each trial) for τ -RH and PMW-FSDD-T for the binomial data stream with

Kosarak queries. Default parameter values are ε = 1.0, T = 2000 and n = 1000.

measures. This is a strong indication that, under the constraints of the FSDD setting, such

adaptive mechanisms do not provide the improvement over basic composition that they

promise to. The experimental results presented in Sections 5.2.2 and 5.2.3 indicate that

τ -RQ is likely a better choice than ARQ in the FSDD-T repeated query setting. Though

ARQ had smaller error in some experiments for uniformly distributed data streams, this

was not reflected in the results on the real data stream that had only a small shift in the

data distribution over time.

In these repeated query experiments, the results shown for τ -RQ represent the best choice

of the frequency parameter τ in each experiment, and, for ARQ, the best of several choices

for each of the hard query cutoff c, the split of privacy budget between the decision and

sample stages, and the hard query threshold θ. In a real-world implementation, these

parameters would need to be chosen in advance, possibly without any prior knowledge

of the data and update distributions. While we do have a heuristic for choosing an

appropriate τ parameter, this is chosen according to the worst case, and so may not

give the best results for τ -RQ when the effect of updates over time is relatively small. For

ARQ, there is no indication in the literature of how to best choose these parameters, so

further investigation is required to complete an appropriate fixed-parameter comparison.

An alternative adaptive mechanism, such as the SVT based distance-based sampling with

adaptive threshold, Algorithm 2 (DSAT) of Li et al. [52], could provide a more suitable

comparison where parameters must be fixed in advance.

The results presented in Section 5.3 indicate that τ -RH is a significantly better choice

87

5.4 Discussion

than PMW-FSDD for interactive queries in the FSDD-T setting, even when the data and

updates are uniformly distributed. In these experiments, frequency parameter τ was fixed

according to our heuristic. The design of PMW means there is only one parameter, α, that

must be chosen. In each of our experiments we compared four choices of α, with the best

performing of these varying based on the query set, but not the data stream. The choice

of privacy parameter ε also had little effect on the accuracy of the PMW mechanism, an

interesting result that warrants further investigation. The relative improvement in the

accuracy of PMW for some choices of α, when the number of allowed queries are large,

may indicate that PMW would demonstrate some advantage for much larger numbers of

queries.

Overall, the relative simplicity of implementing the τ -RQ mechanisms and the clarity of

the heuristic for choosing the τ parameter, combined with these experimental results,

provide good evidence that our mechanisms are more practical and reliable than their

adaptive counterparts.

88

Chapter 6

Conclusions and Future Directions

In this chapter, we conclude by summarising the contributions of the thesis and outlining

possible directions of future work in DP for FSDD. We finish with a brief conclusion of

our findings.

6.1 Summary of contributions

In Section 2.2 we present a taxonomy of dynamic DP. We separate previous work into

three broad categories. The growing database model encompasses the earliest work in

dynamic DP, and is still an active area of research. Under this model, a stream of updates

arrive one-by-one, and records are fixed once added. The time-series model is most often

used in applied research, particularly in the fields of trajectories and internet-of-things;

though important theoretical work also falls under this model. Under this model, there

is a stream of updates for each user, with historical records maintained in the database.

Finally, there are the fully dynamic database models, where records can be changed after

they are added to the database. This model does not receive much attention in the

literature, though there are many applications where only the current state of the data is

relevant, or where storage of all previous updates is unfeasible. This is where we situate

our own FSDD model. As well as defining these categories and situating key works within

them, we also consider more fine-grained distinctions between models, based on whether

the number of updates are fixed in advance, and the privacy model.

89

Conclusions and Future Directions

In Chapter 3 we define our new data model, the fixed-size dynamic database (FSDD).

Our model is similar to that in previous work by Mir et al. [56] in that the set of users is

fixed, and a single user is updated per unit of time. Our model allows the data universe to

be any finite discrete set of states, a broader scope than the finite set of natural numbers

covered by their state update model. We define a privacy model that is less restrictive,

offering differential privacy rather than pan-privacy; inspired by the user-level privacy

definitions often employed for time-series data, it does not depend on the specific values

of the updates.

We provide three mechanisms for the release of DP answers to repeated queries in the

FSDD setting. Our first algorithm, τ -RQ (Algorithm 6), utilises the Laplace mechanism

to release answers to numerical queries, with the frequency of query release optimally de-

termined according to the accuracy of the Laplace mechanism and the query sensitivity. A

repeated black-box transformation mechanism, τ -RBB (Algorithm 7), allows for alterna-

tive noise generation and non-numerical queries by converting any existing DP mechanism

for the static setting to the FSDD setting. Finally, for comparison, we provide a sparse

sector technique (SVT) based mechanism, ARQ, for the FSDD setting (Algorithm 9).

In Chapter 4 we consider interactive queries, where a set of possible queries, but not the

number or order of queries between each update, is known in advance. We utilise τ -RBB,

in our τ -RH (Algorithm 10), mechanism to provide public histograms for answering linear

queries in this setting, and provide a private multiplicative weights mechanism, PMW-

FSDD, for comparison (Algorithm 12).

In Chapter 5 we experimentally evaluate the mechanisms given in Chapters 3 and 4. We

find that our τ -RQ mechanisms provide better accuracy than ARQ and PMW-FSDD in

most experiments. τ -RQ demonstrates significantly better accuracy than ARQ when the

data distribution is shifting over time, and similar accuracy for a uniformly distributed

dataset with uniformly distributed updates. τ -RH demonstrates significantly better accu-

racy than PMW-FSDD across all data and update streams.

6.2 Future directions

This thesis introduces the FSDD model and provides ε-differentially private mechanisms

for query release, primarily in the T -bounded update setting. This work can be extended

90

Conclusions and Future Directions

by relaxing the privacy definition, allowing unbounded streams, or allowing multiple in-

dividuals to be updated per unit of time. Additionally, lower bounds on accuracy under

the FSDD model can be investigated, and compared to existing lower bounds on other

models. Since each FSDD update results in a neighbouring database, a possible line of

investigation, into additional mechanisms and theoretical guarantees, is modelling FSDD

streams using graphs; with vertices representing database histograms and edges represent-

ing neighbour relationships.

Additional comparison mechanisms. Due to the time constraints of a master’s, the-

sis, our experimental comparisons are limited to ARQ and PMW-FSDD. Some additional

candidate comparison mechanisms, that are not implemented, include the DSAT mecha-

nism introduced by Li et al. [52] for repeated queries and histogram publication, the binary

tree mechanism [9, 26, 65] for adaptive interval queries, and the Net/SmallDB mechanism

[1, 15] for histogram publication.

Adaptive query frequency. Given that the initial choice of τ in τ -RQ is based on

worst case analysis, it could instead be optimised based on suitable assumptions about

the distribution of the updates. For example, τ could be increased if there is a reasonable

expectation that the updates will have a similar distribution to the initial database. If

suitable information is not available to inform such assumptions, inspired by the adaptive

threshold of the DSAT mechanism [52], the sample frequency could be chosen adaptively

based on the previous samples. For example, decreasing the sample frequency if the

samples differ very little.

Approximate differential privacy. The privacy guaranteed by all mechanisms in this

thesis is ε-differential privacy, or pure DP. As mentioned in Definition 2.1.1, there is a

relaxed definition of (ε, δ)-differential privacy, or approximate DP, that allows a small

probability of privacy failure. Under approximate DP, by the theorems of advanced and

optimal composition [28, 47], composition is more efficient. Modifying our mechanisms for

approximate DP would improve their accuracy, at a small cost to the robustness of the

privacy guarantee.

91

Conclusions and Future Directions

Relaxed database model. Our database model allows only one individual to be in-

cluded in each update. To make our results more applicable to real-world settings, such

as under a constrained time-series model, we could consider a bound, k, on the number of

individuals included in each update. Extending τ -RQ to this setting would require only

re-optimising for the increased update effect. One possible line of exploration would be to

compare the accuracy of such mechanisms to mechanisms for time-series data where all

individuals can be updated per unit of time.

Infinite updates. Most of our mechanisms are designed under the assumption of a

bound T , on the number of updates. There is much work in the literature regarding

infinite streams of data (e.g., [9, 15, 59]). Our mechanisms could be readily adapted to the

infinite update setting using sliding-window privacy Kellaris et al. [49]. We expect that

bounded user-level ε-DP, with utility not tending towards uniformly random outputs, is

not possible in the infinite update setting under FSDD due to the fixed database size,

though we have not proven this.

Lower bounds. In the literature, lower bounds for the accuracy of the growing database

model are well studied (e.g., [3, 26, 35, 43]). The growing database can be modelled as a

special case of FSDD where there is a single user, or where each user updates only once

after starting in a neutral state. As such, we cannot improve on these bounds, though it

would be interesting to investigate whether matching bounds can be found for FSDD.

Graph representation. The FSDD model has the useful property that databases in

the stream, S, separated by a single update, are neighbouring. That is, Dt ≈⟲ Dt+1.

Additionally, since data points take values from a discrete, finite universe, databases can

be represented as a histogram of counts. Thus, since the number of entries is fixed, the

set of possible databases in a stream can be represented as a finite graph with vertices

representing histograms, and edges between neighbouring histograms. An FSDD stream

can be represented as a walk on such a graph, with the cumulative effect of updates being

the distance between the start vertex and current vertex.

Recent work by Boedihardjo et al. [2] introduced a superregular random walk for generating

differentially private synthetic data. We expect that, given the graph properties of the

FSDD model, such a walk could be applied. The properties of these graphs, and the

92

Conclusions and Future Directions

walk representation of database streams, is also a promising direction for reasoning about

bounds on accuracy of DP mechanisms under FSDD. A similar construction was used by

Kifer and Machanavajjhala [50] to provide differential privacy for queries,n- in the case

where some non-private statistics about the data have already been released, by using the

shortest path in such a graph as a utility score in the exponential mechanism [55].

6.3 Conclusions

Existing scholarship into differential privacy for dynamic data focuses on data streams,

where data are added over time, and time-series, where a stream of data exists for each

individual. There is limited research into DP for data that is modified over time, with

our literature review finding only two papers, by Mir et al. [56] and Qiu and Yi [59],

considering such models. We introduce a new database and privacy model, the fixed-size

dynamic database, that is similar to the database model of Mir et al. [56], with a single

value modified per update, but with a broader scope and less restrictive privacy model.

By limiting updates to a single user per update, unlike the time-series models, the effect of

each update on the overall distribution of the database is small. We provide mechanisms

for releasing both repeated and interactive queries that sample the database at fixed

intervals, and give heuristics for optimising this frequency based on the worst-case update

effect. Our empirical analyses of τ -RQ, τ -RBB, and τ -RH show that these mechanisms

are successful in harnessing the constraints of the FSDD model to improve accuracy over

existing adaptive mechanisms, since the fixed sample intervals allow the full privacy budget

to be allocated to sampling, rather than shared with a decision process.

93

Bibliography

[1] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-

interactive database privacy. In Proceedings of the 40th Annual ACM Symposium on

Theory of Computing, STOC’08, pages 609–618, New York, NY, USA, May 2008.

ACM. ISBN 978-1-60558-047-0. doi: 10.1145/1374376.1374464. URL https://doi.

org/10.1145/1374376.1374464.

[2] March Boedihardjo, Thomas Strohmer, and Roman Vershynin. Private measures,

random walks, and synthetic data. CoRR, abs/2204.09167(arXiv:2204.09167), April

2022. doi: 10.48550/arXiv.2204.09167. URL http://arxiv.org/abs/2204.09167.

[3] Jean Bolot, Nadia Fawaz, S. Muthukrishnan, Aleksandar Nikolov, and Nina Taft.

Private decayed predicate sums on streams. In Proceedings of the 16th International

Conference on Database Theory, ICDT ’13, pages 284–295, New York, NY, USA,

March 2013. ACM. ISBN 978-1-4503-1598-2. doi: 10.1145/2448496.2448530. URL

https://doi.org/10.1145/2448496.2448530.

[4] Joseph A. Calandrino, Ann Kilzer, Arvind Narayanan, Edward W. Felten, and Vitaly

Shmatikov. “you might also like:” privacy risks of collaborative filtering. In 32nd IEEE

Symposium on Security and Privacy, SP’11, pages 231–246. IEEE, May 2011. doi:

10.1109/SP.2011.40. URL https://doi.org/10.1109/SP.2011.40.

[5] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian

for differential privacy. In Advances in Neural Information Processing Systems 33:

Annual Conference on Neural Information Processing Systems 2020, volume 33 of

NeurIPS’20. Curran Associates, Inc., 2020. URL https://proceedings.neurips.

cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html.

[6] Yang Cao and Masatoshi Yoshikawa. Differentially Private Real-Time Data Release

over Infinite Trajectory Streams. In 16th IEEE International Conference on Mobile

94

https://doi.org/10.1145/1374376.1374464
https://doi.org/10.1145/1374376.1374464
http://arxiv.org/abs/2204.09167
https://doi.org/10.1145/2448496.2448530
https://doi.org/10.1109/SP.2011.40
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html

Bibliography

Data Management, volume 2 of MDM’15, pages 68–73. IEEE, June 2015. doi: 10.

1109/MDM.2015.15. URL https://doi.org/10.1109/MDM.2015.15.

[7] Yang Cao, Masatoshi Yoshikawa, Yonghui Xiao, and Li Xiong. Quantifying Dif-

ferential Privacy under Temporal Correlations. In 33rd IEEE International Con-

ference on Data Engineering, ICDE’17, pages 821–832. IEEE, April 2017. doi:

10.1109/ICDE.2017.132. URL https://doi.org/10.1109/ICDE.2017.132.

[8] Adrian Rivera Cardoso and Ryan Rogers. Differentially private histograms under

continual observation: Streaming selection into the unknown. In Proceedings of The

25th International Conference on Artificial Intelligence and Statistics, volume 151 of

Proceedings of Machine Learning Research, pages 2397–2419. PMLR, May 2022. URL

https://proceedings.mlr.press/v151/rivera-cardoso22a.html.

[9] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and Continual Release

of Statistics. ACM Transactions on Information and System Security, 14(3):1–24,

November 2011. ISSN 1094-9224, 1557-7406. doi: 10.1145/2043621.2043626. URL

https://dl.acm.org/doi/10.1145/2043621.2043626.

[10] T.-H. Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu. Differentially private

continual monitoring of heavy hitters from distributed streams. In Privacy Enhanc-

ing Technologies - 12th International Symposium, volume 7384 of Lecture Notes in

Computer Science, pages 140–159, Berlin, Heidelberg, 2012. Springer. ISBN 978-3-

642-31680-7. doi: 10.1007/978-3-642-31680-7 8. URL https://doi.org/10.1007/

978-3-642-31680-7_8.

[11] Yan Chen and Ashwin Machanavajjhala. On the privacy properties of variants on the

sparse vector technique. CoRR, abs/1508.07306, August 2015. URL http://arxiv.

org/abs/1508.07306.

[12] Yan Chen, Ashwin Machanavajjhala, Michael Hay, and Gerome Miklau. Pegasus:

Data-adaptive differentially private stream processing. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security, CCS’17,

pages 1375–1388. ACM, 2017. doi: 10.1145/3133956.3134102. URL https://doi.

org/10.1145/3133956.3134102.

[13] Aloni Cohen and Kobbi Nissim. Linear program reconstruction in practice. Journal

of Privacy and Confidentiality, 10(1), January 2020. ISSN 2575-8527. doi: 10.29012/

95

https://doi.org/10.1109/MDM.2015.15
https://doi.org/10.1109/ICDE.2017.132
https://proceedings.mlr.press/v151/rivera-cardoso22a.html
https://dl.acm.org/doi/10.1145/2043621.2043626
https://doi.org/10.1007/978-3-642-31680-7_8
https://doi.org/10.1007/978-3-642-31680-7_8
http://arxiv.org/abs/1508.07306
http://arxiv.org/abs/1508.07306
https://doi.org/10.1145/3133956.3134102
https://doi.org/10.1145/3133956.3134102

Bibliography

JPC.711. URL https://journalprivacyconfidentiality.org/index.php/jpc/

article/view/711.

[14] Robert M Corless, Gaston H Gonnet, David EG Hare, David J Jeffrey, and Donald E

Knuth. On the lambert w function. Advances in Computational Mathematics, 5:329–

359, 1996. doi: 10.1007/BF02124750. URL https://doi.org/10.1007/BF02124750.

[15] Rachel Cummings, Sara Krehbiel, Kevin A. Lai, and Uthaipon Tao Tantipong-

pipat. Differential privacy for growing databases. In Advances in Neural In-

formation Processing Systems 31: Annual Conference on Neural Information

Processing Systems, volume 31 of NeurIPS’18, pages 8878–8887. Curran Asso-

ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/hash/

ac27b77292582bc293a51055bfc994ee-Abstract.html.

[16] Rachel Cummings, Sara Krehbiel, Kevin A. Lai, and Uthaipon Tao Tantipongpipat.

Differential privacy for growing databases. CoRR, abs/1803.06416, March 2018. URL

http://arxiv.org/abs/1803.06416.

[17] Tore Dalenius. Towards a methodology for statistical disclosure control. Statistik

Tidskrift, 15:429–444, 1977. URL https://hdl.handle.net/1813/111303.

[18] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In

Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, PODS’03, pages 202–210, New York, NY, USA, June

2003. ACM. ISBN 978-1-58113-670-8. doi: 10.1145/773153.773173. URL https:

//doi.org/10.1145/773153.773173.

[19] Wei Dong, Qiyao Luo, and Ke Yi. Continual Observation under User-level Differ-

ential Privacy. In 44th IEEE Symposium on Security and Privacy, SP’23, pages

2190–2207. IEEE, May 2023. ISBN 978-1-66549-336-9. doi: 10.1109/SP46215.

2023.10179466. URL https://www.computer.org/csdl/proceedings-article/

sp/2023/933600c190/1NrbZwal6hi.

[20] Cynthia Dwork. Differential Privacy. In Automata, Languages and Programming,

33rd International Colloquium, volume 4052 of Lecture Notes in Computer Science,

pages 1–12, Berlin, Heidelberg, 2006. Springer. ISBN 978-3-540-35908-1. doi: 10.

1007/11787006 1. URL https://doi.org/10.1007/11787006_1.

96

https://journalprivacyconfidentiality.org/index.php/jpc/article/view/711
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/711
https://doi.org/10.1007/BF02124750
https://proceedings.neurips.cc/paper/2018/hash/ac27b77292582bc293a51055bfc994ee-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/ac27b77292582bc293a51055bfc994ee-Abstract.html
http://arxiv.org/abs/1803.06416
https://hdl.handle.net/1813/111303
https://doi.org/10.1145/773153.773173
https://doi.org/10.1145/773153.773173
https://www.computer.org/csdl/proceedings-article/sp/2023/933600c190/1NrbZwal6hi
https://www.computer.org/csdl/proceedings-article/sp/2023/933600c190/1NrbZwal6hi
https://doi.org/10.1007/11787006_1

Bibliography

[21] Cynthia Dwork and Kobbi Nissim. Privacy-Preserving Datamining on Vertically

Partitioned Databases. In Advances in Cryptology - CRYPTO 2004, 24th An-

nual International CryptologyConference, volume 3152 of Lecture Notes in Com-

puter Science, pages 528–544, Berlin, Heidelberg, 2004. Springer. ISBN 978-3-540-

28628-8. doi: 10.1007/978-3-540-28628-8 32. URL https://doi.org/10.1007/

978-3-540-28628-8_32.

[22] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy.

Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014. ISSN

1551-305X, 1551-3068. doi: 10.1561/0400000042. URL http://www.nowpublishers.

com/articles/foundations-and-trends-in-theoretical-computer-science/

TCS-042.

[23] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni

Naor. Our Data, Ourselves: Privacy Via Distributed Noise Generation. In Advances

in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, volume 4004 of Lecture Notes

in Computer Science, pages 486–503, Berlin, Heidelberg, 2006. Springer. ISBN 978-

3-540-34546-6 978-3-540-34547-3. doi: 10.1007/11761679 29. URL http://link.

springer.com/10.1007/11761679_29.

[24] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating

Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography, Third

Theory of Cryptography Conference, volume 3876 of Lecture Notes in Computer Sci-

ence, pages 265–284, Berlin, Heidelberg, 2006. Springer. ISBN 978-3-540-32731-8

978-3-540-32732-5. doi: 10.1007/11681878 14. URL http://link.springer.com/

10.1007/11681878_14.

[25] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan.

On the complexity of differentially private data release: Efficient algorithms and

hardness results. In Proceedings of the 41st Annual ACM Symposium on Theory of

Computing, STOC’09, pages 381–390, New York, NY, USA, May 2009. ACM. ISBN

978-1-60558-506-2. doi: 10.1145/1536414.1536467. URL https://doi.org/10.1145/

1536414.1536467.

[26] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential

privacy under continual observation. In Proceedings of the 42nd ACM Symposium on

97

https://doi.org/10.1007/978-3-540-28628-8_32
https://doi.org/10.1007/978-3-540-28628-8_32
http://www.nowpublishers.com/articles/foundations-and-trends-in-theoretical-computer-science/TCS-042
http://www.nowpublishers.com/articles/foundations-and-trends-in-theoretical-computer-science/TCS-042
http://www.nowpublishers.com/articles/foundations-and-trends-in-theoretical-computer-science/TCS-042
http://link.springer.com/10.1007/11761679_29
http://link.springer.com/10.1007/11761679_29
http://link.springer.com/10.1007/11681878_14
http://link.springer.com/10.1007/11681878_14
https://doi.org/10.1145/1536414.1536467
https://doi.org/10.1145/1536414.1536467

Bibliography

Theory of Computing, STOC’10, pages 715–724, New York, NY, USA, 2010. ACM.

ISBN 978-1-4503-0050-6. doi: 10.1145/1806689.1806787. URL https://doi.org/

10.1145/1806689.1806787.

[27] Cynthia Dwork, Moni Naor, Toniann Pitassi, Sergey Yekhanin, and Guy N. Roth-

blum. Pan-private streaming algorithms. In Innovations in Computer Science

- ICS 2010, pages 66–80, Tsinghua University, Beijing, China, January 2010.

Tsinghua University Press. URL http://conference.iiis.tsinghua.edu.cn/

ICS2010/content/papers/6.html.

[28] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and Differential

Privacy. In 51st Annual IEEE Symposium on Foundations of Computer Science,

pages 51–60. IEEE, October 2010. doi: 10.1109/FOCS.2010.12. URL https://doi.

org/10.1109/FOCS.2010.12.

[29] Cynthia Dwork, Moni Naor, Omer Reingold, and Guy N. Rothblum. Pure Differ-

ential Privacy for Rectangle Queries via Private Partitions. In Advances in Cryp-

tology - ASIACRYPT 2015 - 21st International Conference on the Theory and Ap-

plication of Cryptology and Information Security, volume 9453 of Lecture Notes in

Computer Science, pages 735–751, Berlin, Heidelberg, 2015. Springer. ISBN 978-3-

662-48800-3. doi: 10.1007/978-3-662-48800-3 30. URL https://doi.org/10.1007/

978-3-662-48800-3_30.

[30] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Tal-

war, and Abhradeep Thakurta. Amplification by Shuffling: From Local to Central

Differential Privacy via Anonymity. In Proceedings of the Thirtieth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA’19, pages 2468–2479. SIAM, Jan-

uary 2019. doi: 10.1137/1.9781611975482.151. URL https://epubs.siam.org/doi/

abs/10.1137/1.9781611975482.151.

[31] Liyue Fan and Li Xiong. Real-time aggregate monitoring with differential privacy. In

Proceedings of the 21st ACM International Conference on Information and Knowledge

Management, CIKM’12, pages 2169–2173, New York, NY, USA, October 2012. ACM.

ISBN 978-1-4503-1156-4. doi: 10.1145/2396761.2398595. URL https://doi.org/10.

1145/2396761.2398595.

98

https://doi.org/10.1145/1806689.1806787
https://doi.org/10.1145/1806689.1806787
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/6.html
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/6.html
https://doi.org/10.1109/FOCS.2010.12
https://doi.org/10.1109/FOCS.2010.12
https://doi.org/10.1007/978-3-662-48800-3_30
https://doi.org/10.1007/978-3-662-48800-3_30
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.151
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.151
https://doi.org/10.1145/2396761.2398595
https://doi.org/10.1145/2396761.2398595

Bibliography

[32] Liyue Fan and Li Xiong. An Adaptive Approach to Real-Time Aggregate Monitoring

With Differential Privacy. IEEE Transactions on Knowledge and Data Engineering,

26(9):2094–2106, September 2014. ISSN 1558-2191. doi: 10.1109/TKDE.2013.96.

URL https://doi.org/10.1109/TKDE.2013.96.

[33] Liyue Fan, Li Xiong, and Vaidy S. Sunderam. FAST: Differentially private real-time

aggregate monitor with filtering and adaptive sampling. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, SIGMOD’13, pages

1065–1068, New York, NY, USA, June 2013. ACM. ISBN 978-1-4503-2037-5. doi:

10.1145/2463676.2465253. URL https://doi.org/10.1145/2463676.2465253.

[34] Liyue Fan, Luca Bonomi, Li Xiong, and Vaidy S. Sunderam. Monitoring web browsing

behavior with differential privacy. In Proceedings of the 23rd International World

Wide Web Conference, WWW’14, pages 177–188, New York, NY, USA, April 2014.

ACM. ISBN 978-1-4503-2744-2. doi: 10.1145/2566486.2568038. URL https://doi.

org/10.1145/2566486.2568038.

[35] Hendrik Fichtenberger, Monika Henzinger, and Jalaj Upadhyay. Constant matters:

Fine-grained Complexity of Differentially Private Continual Observation. CoRR,

abs/2202.11205, April 2022. URL http://arxiv.org/abs/2202.11205.

[36] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon M. Lin, David Page, and

Thomas Ristenpart. Privacy in pharmacogenetics: An end-to-end case study of

personalized warfarin dosing. In Proceedings of the 23rd USENIX Security Sympo-

sium, USENIX Security’14, pages 17–32. USENIX Association, 2014. ISBN 978-

1-931971-15-7. URL https://www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/fredrikson_matthew.

[37] Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. Privacy-preserving

data publishing: A survey of recent developments. ACM Computing Surveys, 42

(4):14:1–14:53, June 2010. ISSN 0360-0300. doi: 10.1145/1749603.1749605. URL

https://doi.org/10.1145/1749603.1749605.

[38] Simson L. Garfinkel, John M. Abowd, and Christian Martindale. Understanding

database reconstruction attacks on public data. Communications of the ACM, 62

(3):46–53, February 2019. ISSN 0001-0782, 1557-7317. doi: 10.1145/3287287. URL

https://dl.acm.org/doi/10.1145/3287287.

99

https://doi.org/10.1109/TKDE.2013.96
https://doi.org/10.1145/2463676.2465253
https://doi.org/10.1145/2566486.2568038
https://doi.org/10.1145/2566486.2568038
http://arxiv.org/abs/2202.11205
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson_matthew
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson_matthew
https://doi.org/10.1145/1749603.1749605
https://dl.acm.org/doi/10.1145/3287287

Bibliography

[39] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally Utility-

maximizing Privacy Mechanisms. SIAM Journal on Computing, 41(6):1673–1693,

2012. ISSN 00975397. doi: 10.1137/09076828X. URL https://www.proquest.com/

docview/1265813038/abstract/DD76335C2ECC4911PQ/1.

[40] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer

and System Sciences, 28(2):270–299, January 1984. ISSN 10902724. doi: 10.1016/

0022-0000(84)90070-9.

[41] Moritz Hardt. A Study of Privacy and Fairness in Sensitive Data Analysis. PhD

thesis, Princeton University, Princeton, NJ, 2011. URL http://arks.princeton.

edu/ark:/88435/dsp01vq27zn422.

[42] Moritz Hardt and Guy N. Rothblum. A Multiplicative Weights Mechanism for

Privacy-Preserving Data Analysis. In 51st Annual IEEE Symposium on Foundations

of Computer Science, FOCS’10, pages 61–70, October 2010. doi: 10.1109/FOCS.

2010.85. URL https://doi.org/10.1109/FOCS.2010.85.

[43] Monika Henzinger, Jalaj Upadhyay, and Sarvagya Upadhyay. Almost tight error

bounds on differentially private continual counting. In Proceedings of the 2023

ACM-SIAM Symposium on Discrete Algorithms, SODA’23, pages 5003–5039. SIAM,

2023. doi: 10.1137/1.9781611977554.CH183. URL https://doi.org/10.1137/1.

9781611977554.ch183.

[44] IDC and Statista. Volume of data/information created, captured, copied, and

consumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025 (in

zettabytes), June 2021. URL https://www-statista-com.eu1.proxy.openathens.

net/statistics/871513/worldwide-data-created/.

[45] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially Private On-

line Learning. In Proceedings of the 25th Annual Conference on Learning Theory,

volume 23 of JMLR Workshop and Conference Proceedings, pages 24.1–24.34. JMLR,

June 2012. URL https://proceedings.mlr.press/v23/jain12.html.

[46] Jiankai Jin, Eleanor McMurtry, Benjamin I. P. Rubinstein, and Olga Ohrimenko.

Are we there yet? timing and floating-point attacks on differential privacy sys-

tems. In 43rd IEEE Symposium on Security and Privacy, SP’22, pages 473–488,

100

https://www.proquest.com/docview/1265813038/abstract/DD76335C2ECC4911PQ/1
https://www.proquest.com/docview/1265813038/abstract/DD76335C2ECC4911PQ/1
http://arks.princeton.edu/ark:/88435/dsp01vq27zn422
http://arks.princeton.edu/ark:/88435/dsp01vq27zn422
https://doi.org/10.1109/FOCS.2010.85
https://doi.org/10.1137/1.9781611977554.ch183
https://doi.org/10.1137/1.9781611977554.ch183
https://www-statista-com.eu1.proxy.openathens.net/statistics/871513/worldwide-data-created/
https://www-statista-com.eu1.proxy.openathens.net/statistics/871513/worldwide-data-created/
https://proceedings.mlr.press/v23/jain12.html

Bibliography

May 2022. doi: 10.1109/SP46214.2022.9833672. URL https://doi.org/10.1109/

SP46214.2022.9833672.

[47] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The Composition Theorem for

Differential Privacy. In Proceedings of the 32nd International Conference on Machine

Learning, volume 37 of JMLR Workshop and Conference Proceedings, pages 1376–

1385. JMLR, June 2015. URL https://proceedings.mlr.press/v37/kairouz15.

html.

[48] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova,

and Adam D. Smith. What Can We Learn Privately? In Proceedings of the 49th

Annual IEEE Symposium on Foundations of Computer Science, FOCS’08, pages 531–

540, USA, October 2008. IEEE. ISBN 978-0-7695-3436-7. doi: 10.1109/FOCS.2008.

27. URL https://doi.org/10.1109/FOCS.2008.27.

[49] Georgios Kellaris, Stavros Papadopoulos, Xiaokui Xiao, and Dimitris Papadias. Dif-

ferentially private event sequences over infinite streams. Proceedings of the VLDB

Endowment, 7(12):1155–1166, August 2014. ISSN 2150-8097. doi: 10.14778/2732977.

2732989. URL https://doi.org/10.14778/2732977.2732989.

[50] Daniel Kifer and Ashwin Machanavajjhala. No free lunch in data privacy. In Proceed-

ings of the 2011 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’11, pages 193–204, New York, NY, USA, June 2011. ACM. ISBN 978-

1-4503-0661-4. doi: 10.1145/1989323.1989345. URL https://doi.org/10.1145/

1989323.1989345.

[51] S. Kullback and R. A. Leibler. On Information and Sufficiency. The An-

nals of Mathematical Statistics, 22(1):79–86, March 1951. ISSN 0003-4851,

2168-8990. doi: 10.1214/aoms/1177729694. URL https://projecteuclid.

org/journals/annals-of-mathematical-statistics/volume-22/issue-1/

On-Information-and-Sufficiency/10.1214/aoms/1177729694.full.

[52] Haoran Li, Li Xiong, Xiaoqian Jiang, and Jinfei Liu. Differentially Private His-

togram Publication for Dynamic Datasets: An Adaptive Sampling Approach. In

Proceedings of the 24th ACM International on Conference on Information and

101

https://doi.org/10.1109/SP46214.2022.9833672
https://doi.org/10.1109/SP46214.2022.9833672
https://proceedings.mlr.press/v37/kairouz15.html
https://proceedings.mlr.press/v37/kairouz15.html
https://doi.org/10.1109/FOCS.2008.27
https://doi.org/10.14778/2732977.2732989
https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1145/1989323.1989345
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full

Bibliography

Knowledge Management, CIKM’15, pages 1001–1010, New York, NY, USA, Octo-

ber 2015. ACM. ISBN 978-1-4503-3794-6. doi: 10.1145/2806416.2806441. URL

https://doi.org/10.1145/2806416.2806441.

[53] Min Lyu, Dong Su, and Ninghui Li. Understanding the sparse vector technique for

differential privacy. Proceedings of the VLDB Endowment, 10(6):637–648, February

2017. ISSN 2150-8097. doi: 10.14778/3055330.3055331. URL https://doi.org/10.

14778/3055330.3055331.

[54] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan

Venkitasubramaniam. ℓ-diversity: Privacy beyond k-anonymity. ACM Transactions

on Knowledge Discovery from Data, 1(1):3, 2007. ISSN 1556-4681. doi: 10.1145/

1217299.1217302. URL https://dl.acm.org/doi/10.1145/1217299.1217302.

[55] Frank McSherry and Kunal Talwar. Mechanism Design via Differential Privacy. In

48th Annual IEEE Symposium on Foundations of Computer Science, FOCS’07, pages

94–103. IEEE, October 2007. doi: 10.1109/FOCS.2007.66. URL https://doi.org/

10.1109/FOCS.2007.41.

[56] Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov, and Rebecca N. Wright.

Pan-private algorithms via statistics on sketches. In Proceedings of the 30th

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

PODS’11, pages 37–48, New York, NY, USA, June 2011. ACM. ISBN 978-1-4503-

0660-7. doi: 10.1145/1989284.1989290. URL https://doi.org/10.1145/1989284.

1989290.

[57] Ilya Mironov. On significance of the least significant bits for differential privacy. In

Proceedings of the 2012 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’12, pages 650–661, New York, NY, USA, October 2012. ACM. ISBN

978-1-4503-1651-4. doi: 10.1145/2382196.2382264. URL https://doi.org/10.1145/

2382196.2382264.

[58] Victor Perrier, Hassan Jameel Asghar, and Dali Kaafar. Private Continual Re-

lease of Real-Valued Data Streams. In Proceedings of the 26th Annual Net-

work and Distributed System Security Symposium, NDSS’19, San Diego, CA,

2019. The Internet Society. ISBN 978-1-891562-55-6. doi: 10.14722/ndss.2019.

102

https://doi.org/10.1145/2806416.2806441
https://doi.org/10.14778/3055330.3055331
https://doi.org/10.14778/3055330.3055331
https://dl.acm.org/doi/10.1145/1217299.1217302
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1145/1989284.1989290
https://doi.org/10.1145/1989284.1989290
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1145/2382196.2382264

Bibliography

23535. URL https://www.ndss-symposium.org/wp-content/uploads/2019/02/

ndss2019_07B-5_Perrier_paper.pdf.

[59] Yuan Qiu and Ke Yi. Differential Privacy on Dynamic Data. CoRR, abs/2209.01387,

September 2022. doi: 10.48550/arXiv.2209.01387. URL https://arxiv.org/abs/

2209.01387v2.

[60] Vibhor Rastogi and Suman Nath. Differentially private aggregation of distributed

time-series with transformation and encryption. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, SIGMOD’10, pages 735–746, New

York, NY, USA, June 2010. ACM. ISBN 978-1-4503-0032-2. doi: 10.1145/1807167.

1807247. URL https://doi.org/10.1145/1807167.1807247.

[61] Aaron Roth. Lecture 11: The sparse vector technique. Lecture notes, CIS 800/002 The

Algorithmic Foundations of Data Privacy, October 20, University of Pennsylvania,

2011. URL https://www.cis.upenn.edu/~aaroth/courses/slides/Lecture11.

pdf.

[62] Aaron Roth and Tim Roughgarden. Interactive privacy via the median mechanism.

In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC’10,

pages 765–774, New York, NY, USA, June 2010. ACM. ISBN 978-1-4503-0050-6. doi:

10.1145/1806689.1806794. URL https://doi.org/10.1145/1806689.1806794.

[63] Pierangela Samarati and Latanya Sweeney. Generalizing data to provide anonymity

when disclosing information. In Proceedings of the Seventeenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, PODS’98, page

188. ACM, 1998. doi: 10.1145/275487.275508. URL https://www.eng.auburn.edu/

~xqin/courses/comp7370/k-anonymity-pods98.pdf.

[64] Adam D. Smith and Abhradeep Thakurta. (Nearly) Optimal Algorithms for

Private Online Learning in Full-information and Bandit Settings. In Advances

in Neural Information Processing Systems 26: 27th Annual Conference on Neu-

ral Information Processing Systems 2013, volume 26 of NeurIPS’13. Curran As-

sociates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/hash/

c850371fda6892fbfd1c5a5b457e5777-Abstract.html.

[65] Adam D. Smith and Jonathan Ullman. Lecture 7: The Binary Tree Mechanism. Lec-

ture notes, Privacy in Statistics and Machine Learning, Spring, Boston University and

103

https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_07B-5_Perrier_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_07B-5_Perrier_paper.pdf
https://arxiv.org/abs/2209.01387v2
https://arxiv.org/abs/2209.01387v2
https://doi.org/10.1145/1807167.1807247
https://www.cis.upenn.edu/~aaroth/courses/slides/Lecture11.pdf
https://www.cis.upenn.edu/~aaroth/courses/slides/Lecture11.pdf
https://doi.org/10.1145/1806689.1806794
https://www.eng.auburn.edu/~xqin/courses/comp7370/k-anonymity-pods98.pdf
https://www.eng.auburn.edu/~xqin/courses/comp7370/k-anonymity-pods98.pdf
https://proceedings.neurips.cc/paper/2013/hash/c850371fda6892fbfd1c5a5b457e5777-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/c850371fda6892fbfd1c5a5b457e5777-Abstract.html

Bibliography

Northeastern University, 2021. URL https://dpcourse.github.io/2021-spring/

lecnotes-web/lec-08-cdf.pdf.

[66] TianhaoWang, Joann Qiongna Chen, Zhikun Zhang, Dong Su, Yueqiang Cheng, Zhou

Li, Ninghui Li, and Somesh Jha. Continuous Release of Data Streams under both

Centralized and Local Differential Privacy. In Proceedings of the 2021 ACM SIGSAC

Conference on Computer and Communications Security, CCS’21, pages 1237–1253,

New York, NY, USA, November 2021. ACM. ISBN 978-1-4503-8454-4. doi: 10.1145/

3460120.3484750. URL https://doi.org/10.1145/3460120.3484750.

[67] Stanley L. Warner. Randomized Response: A Survey Technique for Eliminating

Evasive Answer Bias. Journal of the American Statistical Association, 60(309):63–

69, March 1965. ISSN 0162-1459. doi: 10.1080/01621459.1965.10480775. URL https:

//www.tandfonline.com/doi/abs/10.1080/01621459.1965.10480775.

[68] Qingqing Ye, Haibo Hu, Ninghui Li, Xiaofeng Meng, Huadi Zheng, and Haotian

Yan. Beyond Value Perturbation: Local Differential Privacy in the Temporal Setting.

In 40th IEEE Conference on Computer Communications, INFOCOM’21, pages 1–

10. IEEE, May 2021. doi: 10.1109/INFOCOM42981.2021.9488899. URL https:

//doi.org/10.1109/INFOCOM42981.2021.9488899.

[69] Sinan Yıldırım, Kamer Kaya, Soner Aydın, and Hakan Buğra Erentuğ. Differentially

Private Frequency Sketches for Intermittent Queries on Large Data Streams. In

2020 IEEE International Conference on Big Data, BigData’20, pages 4083–4092.

IEEE, December 2020. doi: 10.1109/BigData50022.2020.9377786. URL https://

ieeexplore.ieee.org/document/9377786.

104

https://dpcourse.github.io/2021-spring/lecnotes-web/lec-08-cdf.pdf
https://dpcourse.github.io/2021-spring/lecnotes-web/lec-08-cdf.pdf
https://doi.org/10.1145/3460120.3484750
https://www.tandfonline.com/doi/abs/10.1080/01621459.1965.10480775
https://www.tandfonline.com/doi/abs/10.1080/01621459.1965.10480775
https://doi.org/10.1109/INFOCOM42981.2021.9488899
https://doi.org/10.1109/INFOCOM42981.2021.9488899
https://ieeexplore.ieee.org/document/9377786
https://ieeexplore.ieee.org/document/9377786

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Ligthart-Smith, Alex Jacey

Title:
Differential Privacy Under a Constrained Dynamic Database Model

Date:
2024-02

Persistent Link:
http://hdl.handle.net/11343/347226

Terms and Conditions:
Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the
copyright owner. The work may not be altered without permission from the copyright owner.
Readers may only download, print and save electronic copies of whole works for their own
personal non-commercial use. Any use that exceeds these limits requires permission from
the copyright owner. Attribution is essential when quoting or paraphrasing from these works.

http://hdl.handle.net/11343/347226

	Abstract
	Declaration of Authorship
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Symbols and Functions
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Background and Related Work
	2.1 Differential privacy for static data
	2.1.1 Data model
	2.1.2 Definitions
	2.1.3 Key results
	2.1.4 The Laplace mechanism
	2.1.5 Differentially private query sequences

	2.2 Differential privacy for dynamic data
	2.2.1 Differential privacy for growing databases
	2.2.2 Differential privacy for time-series data
	2.2.3 Differential privacy for fully dynamic data
	2.2.4 Alternative models

	3 The Fixed Size Dynamic Database Model (FSDD)
	3.1 Database and privacy model
	3.1.1 Database model
	3.1.2 Privacy model
	3.1.3 Comparison to existing dynamic database models

	3.2 Repeated queries under the FSDD Model
	3.2.1 -frequency repeated queries on FSDD-T (-RQ)
	3.2.2 -frequency repeated black box (-RBB)
	3.2.3 Adaptive repeated queries on FSDD-T (ARQ)

	4 Interactive Query Sequences
	4.1 -RQ for interactive query sequences
	4.2 PMW-FSDD-T
	4.2.1 Case 1: no outer update rule
	4.2.2 Case 2: uniform outer update rule
	4.2.3 Privacy guarantees

	4.3 PMW-FSDD-

	5 Experimental Evaluation
	5.1 Experiment setup
	5.1.1 Protocols
	5.1.2 Synthetic data
	5.1.3 Real data
	5.1.4 Queries

	5.2 Repeated query experiments
	5.2.1 Experimental results vs. theoretical bounds
	5.2.2 Results on synthetic data streams
	5.2.3 Results on real data with synthesised updates

	5.3 Interactive query experiments
	5.3.1 Results on synthetic data and query streams
	5.3.2 Results on real query stream

	5.4 Discussion

	6 Conclusions and Future Directions
	6.1 Summary of contributions
	6.2 Future directions
	6.3 Conclusions

	Bibliography

